Clinical Trials Logo

Sezary Syndrome clinical trials

View clinical trials related to Sezary Syndrome.

Filter by:

NCT ID: NCT01408043 Terminated - Clinical trials for Recurrent Mantle Cell Lymphoma

Etoposide, Filgrastim, and Plerixafor in Improving Stem Cell Mobilization in Treating Patients With Non-Hodgkin Lymphoma

Start date: October 2011
Phase: N/A
Study type: Interventional

This clinical trial studies etoposide, filgrastim and plerixafor in improving stem cell mobilization in patients with non-Hodgkin lymphoma. Giving colony-stimulating factors, such as filgrastim, and plerixafor and etoposide together helps stem cells move from the patient's bone marrow to the blood so they can be collected and stored.

NCT ID: NCT01159067 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Deferasirox for Treating Patients Who Have Undergone Allogeneic Stem Cell Transplant and Have Iron Overload

Start date: July 2010
Phase: Phase 2
Study type: Interventional

RATIONALE: Low dose deferasirox may be safe and effective in treating patients who have undergone hematopoietic stem cell transplant and have iron overload. PURPOSE: This pilot clinical trial studies safety and tolerability of deferasirox in hematopoietic stem cell transplant recipients who have iron overload. Effect of low dose deferasirox on labile plasma iron is also examined.

NCT ID: NCT01116154 Terminated - Clinical trials for Recurrent Mantle Cell Lymphoma

Vorinostat and Lenalidomide in Treating Patients With Relapsed or Refractory Hodgkin Lymphoma or Non-Hodgkin Lymphoma

Start date: May 2010
Phase: Phase 1
Study type: Interventional

RATIONALE: Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Giving vorinostat together with lenalidomide may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of vorinostat when given together with lenalidomide in treating patients with relapsed or refractory Hodgkin lymphoma or non-Hodgkin lymphoma.

NCT ID: NCT01076270 Terminated - Clinical trials for Recurrent Mantle Cell Lymphoma

Plerixafor and Filgrastim For Mobilization of Donor Peripheral Blood Stem Cells Before A Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

Start date: June 2010
Phase: N/A
Study type: Interventional

RATIONALE: Giving chemotherapy and total-body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they will help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving colony-stimulating factors, such as filgrastim (G-CSF) and plerixafor, to the donor helps the stem cells move (mobilization) from the bone marrow to the blood so they can be collected and stored. PURPOSE: This clinical trial is studying giving plerixafor and filgrastim together for mobilization of donor peripheral blood stem cells before a peripheral blood stem cell transplant in treating patients with hematologic malignancies

NCT ID: NCT01044745 Terminated - Clinical trials for Graft Versus Host Disease

Rituximab in Preventing Acute Graft-Versus-Host Disease in a Donor Stem Cell Transplant for Hematologic Cancer

Start date: December 10, 2009
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well rituximab works in preventing acute graft-versus-host disease (GVHD) in patients undergoing a donor stem cell transplant for hematologic cancer. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving a monoclonal antibody, rituximab, together with anti-thymocyte globulin, tacrolimus, and mycophenolate mofetil before and after the transplant may stop this from happening

NCT ID: NCT00933985 Terminated - Clinical trials for Refractory Chronic Lymphocytic Leukemia

Obatoclax Mesylate, Vincristine Sulfate, Doxorubicin Hydrochloride, and Dexrazoxane Hydrochloride in Treating Young Patients With Relapsed or Refractory Solid Tumors, Lymphoma, or Leukemia

Start date: June 2009
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of obatoclax mesylate when given together with vincristine sulfate, doxorubicin hydrochloride, and dexrazoxane hydrochloride in treating young patients with relapsed or refractory solid tumors, lymphoma, or leukemia. Obatoclax mesylate may stop the growth of cancer cells by blocking some of the proteins needed for cell growth and causing the cells to self-destruct. Drugs used in chemotherapy, such as vincristine sulfate, doxorubicin hydrochloride, and dexrazoxane hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving obatoclax mesylate together with combination chemotherapy may kill more cancer cells.

NCT ID: NCT00369629 Terminated - Lymphoma Clinical Trials

Gemcitabine and Pemetrexed Disodium in Treating Patients With Advanced Mycosis Fungoides or Sézary Syndrome

Start date: August 28, 2006
Phase: Phase 1
Study type: Interventional

RATIONALE: Drugs used in chemotherapy, such as gemcitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Pemetrexed disodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving gemcitabine together with pemetrexed disodium may kill more cancer cells. PURPOSE: This was planned as a phase I/II trial studying the side effects and determining the best dose of gemcitabine hydrochloride when given together with pemetrexed disodium. Unfortunately, due to a lack of funding, the phase II portion was never conducted.

NCT ID: NCT00354185 Terminated - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

PXD101 and 17-N-Allylamino-17-Demethoxygeldanamycin in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma

Start date: May 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of giving PDX101 together with 17-AAG in treating patients with metastatic or unresectable solid tumors or lymphoma. PDX101 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving PXD101 together with 17-AAG may kill more cancer cells.

NCT ID: NCT00127881 Terminated - Mycosis Fungoides Clinical Trials

Study of Human Monoclonal Antibody to Treat Mycosis Fungoides and Sezary Syndrome

Start date: July 2005
Phase: Phase 3
Study type: Interventional

The purpose of this study is to determine the efficacy of the drug, HuMax-CD4, in patients with mycosis fungoides(MF) and sezary syndrome who are intolerant to or do not respond to treatment with Targretin® and one other standard therapy.

NCT ID: NCT00103272 Terminated - Clinical trials for Recurrent Mantle Cell Lymphoma

17-N-Allylamino-17-Demethoxygeldanamycin and Bortezomib in Treating Patients With Relapsed or Refractory Hematologic Cancer

Start date: April 2005
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of 17-N-allylamino-17-demethoxygeldanamycin and bortezomib in treating patients with relapsed or refractory hematologic cancer. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving 17-N-allylamino-17-demethoxygeldanamycin together with bortezomib may kill more cancer cells.