Clinical Trials Logo

Recurrent Hodgkin Lymphoma clinical trials

View clinical trials related to Recurrent Hodgkin Lymphoma.

Filter by:
  • Completed  
  • Page 1 ·  Next »

NCT ID: NCT03096782 Completed - Clinical trials for Acute Myeloid Leukemia

Umbilical Cord Blood Transplant With Added Sugar and Chemotherapy and Radiation Therapy in Treating Patients With Leukemia or Lymphoma

Start date: October 13, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well an umbilical cord blood transplant with added sugar works with chemotherapy and radiation therapy in treating patients with leukemia or lymphoma. Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The umbilical cord blood cells will be grown ("expanded") on a special layer of cells collected from the bone marrow of healthy volunteers in a laboratory. A type of sugar will also be added to the cells in the laboratory that may help the transplant to "take" faster.

NCT ID: NCT03013933 Completed - Clinical trials for Refractory Hodgkin Lymphoma

Brentuximab Vedotin, Cyclosporine, and Verapamil Hydrochloride in Treating Patients With Relapsed or Refractory Hodgkin Lymphoma

Start date: May 3, 2017
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of brentuximab vedotin and cyclosporine when given together with verapamil hydrochloride in treating patients with Hodgkin lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Brentuximab vedotin is a monoclonal antibody, brentuximab, linked to a toxic agent called vedotin. Brentuximab attaches to CD30 positive cancer cells in a targeted way and delivers vedotin to kill them. Immunosuppressive therapies, such as cyclosporine, may improve bone marrow function and increase blood cell counts. Verapamil hydrochloride may increase the effectiveness of brentuximab vedotin by overcoming drug resistance of the cancer cells. Giving brentuximab vedotin, cyclosporine, and verapamil hydrochloride may work better in treating patients with Hodgkin lymphoma.

NCT ID: NCT02960646 Completed - Clinical trials for Acute Myeloid Leukemia

Engineered Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies

Start date: January 18, 2017
Phase: Phase 1
Study type: Interventional

This pilot phase I trial studies the side effects of engineered donor stem cell transplant in treating patients with hematologic malignancies. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Using T cells specially selected from donor blood in the laboratory for transplant may stop this from happening.

NCT ID: NCT02869633 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Ibrutinib in Treating Patients With Refractory or Relapsed Lymphoma After Donor Stem Cell Transplant

Start date: November 2016
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well ibrutinib works in treating patients after a donor stem cell transplant for lymphoma that is not responding to treatment or has come back. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02593123 Completed - Multiple Myeloma Clinical Trials

Adoptive Immunotherapy in Relapsed Hematological Malignancy: Early GVHD Prophylaxis

Start date: November 4, 2015
Phase: Phase 2
Study type: Interventional

Determine the relapse-free, donor lymphocyte infusion (DLI)-free survival in patients receiving the investigational regimen.This is a randomized phase II clinical trial, comparing two different dosing schedules of mycophenolate mofetil for graft versus host disease (GVHD) prevention following allogeneic stem cell transplantation. Risk for relapse, GVHD and non-relapse mortality will be assessed. Adaptive randomization between two study arms will be performed based on T cell counts at day 60.

NCT ID: NCT02304458 Completed - Metastatic Melanoma Clinical Trials

Nivolumab With or Without Ipilimumab in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Sarcomas

Start date: March 30, 2015
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of nivolumab when given with or without ipilimumab to see how well they work in treating younger patients with solid tumors or sarcomas that have come back (recurrent) or do not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether nivolumab works better alone or with ipilimumab in treating patients with recurrent or refractory solid tumors or sarcomas.

NCT ID: NCT01921387 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Radiolabeled Monoclonal Antibody and Combination Chemotherapy Before Stem Cell Transplant in Treating Patients With High-Risk Lymphoid Malignancies

Start date: October 9, 2013
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and the best dose of radiolabeled monoclonal antibody when given together with combination chemotherapy before stem cell transplant and to see how well it works in treating patients with high-risk lymphoid malignancies. Radiolabeled monoclonal antibodies, such as yttrium Y 90 anti-CD45 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. Giving chemotherapy before a stem transplant stops the growth of cancer cells by stopping them from dividing or killing them. Stem cells collected from the patient's blood are then returned to the patient to replace the blood-forming cells that were destroyed by the radiolabeled monoclonal antibody and chemotherapy.

NCT ID: NCT01897012 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Alisertib and Romidepsin in Treating Patients With Relapsed or Refractory B-Cell or T-Cell Lymphomas

Start date: July 17, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of alisertib and romidepsin in treating patients with B-cell or T-cell lymphomas that have returned after a period of improvement (relapsed) or have not responded to treatment (refractory). Alisertib and romidepsin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01822509 Completed - Clinical trials for Myeloproliferative Neoplasm

Ipilimumab or Nivolumab in Treating Patients With Relapsed Hematologic Malignancies After Donor Stem Cell Transplant

Start date: May 16, 2013
Phase: Phase 1
Study type: Interventional

This phase I/Ib trial studies the side effects and best dose of ipilimumab or nivolumab in treating patients with cancers of the blood and blood-forming tissues (hematologic cancers) that have returned after a period of improvement (relapsed) after donor stem cell transplant. Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT01527045 Completed - Clinical trials for Chronic Lymphocytic Leukemia

Donor Atorvastatin Treatment in Preventing Severe Acute GVHD After Nonmyeloablative Peripheral Blood Stem Cell Transplant in Patients With Hematological Malignancies

Start date: September 25, 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well donor atorvastatin treatment works in preventing severe graft-versus-host disease (GVHD) after nonmyeloablative peripheral blood stem cell (PBSC) transplant in patients with hematological malignancies. Giving low doses of chemotherapy, such as fludarabine phosphate, before a donor PBSC transplantation slows the growth of cancer cells and may also prevent the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also cause an immune response against the body's normal cells (GVHD). Giving atorvastatin to the donor before transplant may prevent severe GVHD.