Pulmonary Hypertension Clinical Trial
Official title:
Peripheral Low Dose Systemic Thrombolysis Versus Catheter Directed Acoustic Pulse Thrombolysis for Treatment of Submassive Pulmonary Embolism
To determine whether peripheral low dose systemic thrombolysis (PLST) is non-inferior to catheter directed acoustic pulse thrombolysis (ACDT) in improving RV function and reducing pulmonary artery pressures in submassive pulmonary embolism (PE)
Acute pulmonary embolism (PE) is a life-threatening event associated with high morbidity and mortality. With more than 100,000 deaths per year, PE constitutes the third most common cardiovascular cause of death following myocardial infarction and stroke. In non massive PE, anticoagulation is the treatment of choice. Advanced treatment options such as systemic thrombolysis in submassive and massive PE help reduce mortality but unfortunately are associated with bleeding complications such as a 2 to 5% risk of hemorrhagic stroke.This has led to development of pharmaco-mechanical therapies such as catheter directed thrombolysis (CDT). Current guidelines advocate against the use of full dose systemic thrombolysis for acute submassive PE in all patients unless the bleeding risk is very low. CDT has shown efficiency in reducing right ventricular strain and pulmonary hypertension without increasing bleeding complications in trial populations. Ultrasound assisted CDT (ACDT) is an established treatment modality for acute PE which utilizes high frequency low power ultrasonic waves. It is FDA approved for sub-massive and massive pulmonary embolism. However, ultrasound does not breakdown the thrombus itself but increases the permeability for thrombolytic drugs. The ULTIMA trial showed ACDT was superior to anticoagulation treatment in reducing pulmonary hypertension (PH) and right ventricular dilatation in submassive and massive PE. The trial also reported no intracranial hemorrhage. The exact benefit and mechanism of ACDT in dissolving clots is still not clear. Recently, the PERFECT registry described 100 patients who underwent CDT (64%) and ACDT (46%) for PE, the study showed no difference in reduction of pulmonary artery pressures. ACDT requires the placement of catheters in the pulmonary arteries in a catheterization laboratory by an interventional cardiologist/radiologist through the internal jugular vein/femoral vein and catheters are kept for 12-24 hrs to infuse recombinant tissue plasminogen activator (r-tpa). While many healthcare systems have developed a pulmonary embolism response team (PERT) to make a prompt therapeutic decision in submassive and massive pulmonary embolism management. However, it is not uncommon for CDT to be delayed (sometimes > 12 hours) after the initial diagnosis due to the availability of the interventional cardiologist. Furthermore, placement of pulmonary catheters in CDT can have the risk, albeit low, of pulmonary vasculature injury. The investigators hypothesize that low dose thrombolytic therapy can be administered through a peripheral vein. PLST is rapidly administrable and does not require placement in a catheterization laboratory by an interventional cardiologist. In addition, the use of low dose r-tpa reduces risk of major bleeding complications. The investigators aim to see if equivalent low dose r-tpa given peripherally i.e PLST is non-inferior to ACDT for the treatment of submassive PE. Both treatments will be compared in safety, efficacy and overall cardiopulmonary function. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Withdrawn |
NCT01950585 -
Hydroxyurea in Pulmonary Arterial Hypertension
|
Early Phase 1 | |
Completed |
NCT00527163 -
Role of Nitric Oxide in Malaria
|
||
Completed |
NCT03649932 -
Enteral L Citrulline Supplementation in Preterm Infants - Safety, Efficacy and Dosing
|
Phase 1 | |
Recruiting |
NCT04554160 -
Arrhythmias in Pulmonary Hypertension Assessed by Continuous Long-term Cardiac Monitoring
|
||
Enrolling by invitation |
NCT03683186 -
A Study Evaluating the Long-Term Efficacy and Safety of Ralinepag in Subjects With PAH Via an Open-Label Extension
|
Phase 3 | |
Completed |
NCT01894035 -
Non-interventional Multi-center Study on Patients Under Routine Treatment of Pulmonary Arterial Hypertension (PAH) With Inhaled Iloprost Using I-Neb as a Device for Inhalation
|
||
Not yet recruiting |
NCT04083729 -
Persistent Pulmonary Hypertension After Percutaneous Mitral Commissurotomy
|
N/A | |
Completed |
NCT02821156 -
Study on the Use of Inhaled NO (iNO)
|
N/A | |
Terminated |
NCT02246348 -
Evaluating Lung Doppler Signals in Patients With Systemic Sclerosis (SSc)
|
N/A | |
Terminated |
NCT02243111 -
Detecting Pulmonary Arterial Hypertension (PAH) in Patients With Systemic Sclerosis (SSc) by Ultrasound
|
N/A | |
Completed |
NCT02216279 -
Phase-II Study of the Use of PulmoBind for Molecular Imaging of Pulmonary Hypertension
|
Phase 2 | |
Recruiting |
NCT01913847 -
Safety and Efficacy Study of HGP1207 in Patients With Pulmonary Hypertension
|
Phase 3 | |
Completed |
NCT01615484 -
Ex-vivo Perfusion and Ventilation of Lungs Recovered From Non-Heart-Beating Donors to Assess Transplant Suitability
|
N/A | |
Completed |
NCT06240871 -
Contrast Enhanced PA Pressure Measurements
|
||
Completed |
NCT02377934 -
Evaluation of Radiation Induced Pulmonary Hypertension Using MRI in Stage III NSCLC Patients Treated With Chemoradiotherapy. A Pilot Study
|
||
Recruiting |
NCT01091012 -
Effectiveness of the Vasodilator Test With Revatio, Made in Patients With Acute Pulmonary Hypertension
|
Phase 3 | |
Completed |
NCT02275793 -
The Regulation of Pulmonary Vascular Resistance in Patients With Heart Failure
|
||
Completed |
NCT01463514 -
Noninvasive Determination of Cerebral Tissue Oxygenation in Pulmonary Hypertension
|
N/A | |
Completed |
NCT01484899 -
Smoking: a Risk Factor for Pulmonary Arterial Hypertension?
|
N/A | |
Completed |
NCT00739375 -
The Effect of Blood Flow in the Maturing Arteriovenous Access for Hemodialysis on the Development of Pulmonary Hypertension.
|
Phase 1 |