Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03581877
Other study ID # 18-0805
Secondary ID
Status Completed
Phase Phase 4
First received
Last updated
Start date January 28, 2019
Est. completion date March 19, 2023

Study information

Verified date March 2023
Source Northwell Health
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

To determine whether peripheral low dose systemic thrombolysis (PLST) is non-inferior to catheter directed acoustic pulse thrombolysis (ACDT) in improving RV function and reducing pulmonary artery pressures in submassive pulmonary embolism (PE)


Description:

Acute pulmonary embolism (PE) is a life-threatening event associated with high morbidity and mortality. With more than 100,000 deaths per year, PE constitutes the third most common cardiovascular cause of death following myocardial infarction and stroke. In non massive PE, anticoagulation is the treatment of choice. Advanced treatment options such as systemic thrombolysis in submassive and massive PE help reduce mortality but unfortunately are associated with bleeding complications such as a 2 to 5% risk of hemorrhagic stroke.This has led to development of pharmaco-mechanical therapies such as catheter directed thrombolysis (CDT). Current guidelines advocate against the use of full dose systemic thrombolysis for acute submassive PE in all patients unless the bleeding risk is very low. CDT has shown efficiency in reducing right ventricular strain and pulmonary hypertension without increasing bleeding complications in trial populations. Ultrasound assisted CDT (ACDT) is an established treatment modality for acute PE which utilizes high frequency low power ultrasonic waves. It is FDA approved for sub-massive and massive pulmonary embolism. However, ultrasound does not breakdown the thrombus itself but increases the permeability for thrombolytic drugs. The ULTIMA trial showed ACDT was superior to anticoagulation treatment in reducing pulmonary hypertension (PH) and right ventricular dilatation in submassive and massive PE. The trial also reported no intracranial hemorrhage. The exact benefit and mechanism of ACDT in dissolving clots is still not clear. Recently, the PERFECT registry described 100 patients who underwent CDT (64%) and ACDT (46%) for PE, the study showed no difference in reduction of pulmonary artery pressures. ACDT requires the placement of catheters in the pulmonary arteries in a catheterization laboratory by an interventional cardiologist/radiologist through the internal jugular vein/femoral vein and catheters are kept for 12-24 hrs to infuse recombinant tissue plasminogen activator (r-tpa). While many healthcare systems have developed a pulmonary embolism response team (PERT) to make a prompt therapeutic decision in submassive and massive pulmonary embolism management. However, it is not uncommon for CDT to be delayed (sometimes > 12 hours) after the initial diagnosis due to the availability of the interventional cardiologist. Furthermore, placement of pulmonary catheters in CDT can have the risk, albeit low, of pulmonary vasculature injury. The investigators hypothesize that low dose thrombolytic therapy can be administered through a peripheral vein. PLST is rapidly administrable and does not require placement in a catheterization laboratory by an interventional cardiologist. In addition, the use of low dose r-tpa reduces risk of major bleeding complications. The investigators aim to see if equivalent low dose r-tpa given peripherally i.e PLST is non-inferior to ACDT for the treatment of submassive PE. Both treatments will be compared in safety, efficacy and overall cardiopulmonary function.


Recruitment information / eligibility

Status Completed
Enrollment 31
Est. completion date March 19, 2023
Est. primary completion date March 19, 2023
Accepts healthy volunteers No
Gender All
Age group 18 Years to 89 Years
Eligibility Inclusion Criteria: 1. Age 18 years or older, able to consent 2. Submassive PE evidenced by CT showing saddle pulmonary embolism, central right and/or left main pulmonary artery emboli. 3. Submassive PE confirmed by right ventricular dimension to left ventricular dimension ratio = 1 in apical 4-chamber view echo/CT scan. 4. Signs of RV dysfunction by echocardiogram, or elevated troponin I >0.04, or pro-BNP > 400 on serial measurements. 5. PE symptom duration less than or equal to 14 days - Exclusion Criteria: 1. Age <18 to age >90 years; 2. PE symptom duration >14 days; 3. Administration of thrombolytic drugs in the last 4 days 4. Contraindications to thrombolytic therapy: 1. Active bleeding disorder or coagulation disorder; 2. Platelet count <100 000/mm3 3. Hematocrit < 30% 4. INR> 3 5. Previous history of vitamin K antagonists with international normalized ratio >2.5 on admission 6. History of intracranial or intraspinal surgery or trauma or intracranial/intraspinal bleeding 7. Intracranial neoplasm 8. Arteriovenous malformation, or aneurysm 9. Gastrointestinal bleeding <3 months 10. Internal eye surgery or hemorrhagic retinopathy less than three-month duration 11. Major surgery, cataract surgery, obstetric delivery, cardiopulmonary resuscitation, or invasive procedure less than10 days duration 12. Allergy, hypersensitivity, or thrombocytopenia caused heparin or tPA 5. Severe contrast allergy to iodinated contrast 6. Large (>10 mm) right atrial or right ventricular thrombus 7. Systolic blood pressure <90 mm Hg 8. Severe hypertension on repeat measurement (systolic >180 mm Hg or diastolic >105 mm Hg) 9. Pregnancy 10. In any other investigational drug or device study 11. Inability to follow instructions or comply with treatment -

Study Design


Intervention

Drug:
Alteplase
As stated before, low dose r-tpa will be administered through a peripheral vein for PLST.
Device:
EKOS
As stated before, the EKos device will be used for ultrasound assisted catheter directed thrombolysis or ACDT, same dose t-tpa will administered through the pulmonary catheter. It will be given at a fixed dose over 24 hours.

Locations

Country Name City State
United States Southside Northwell Hospital Bay Shore New York
United States Long Island Jewish Medical Center Queens New York

Sponsors (1)

Lead Sponsor Collaborator
Northwell Health

Country where clinical trial is conducted

United States, 

References & Publications (10)

Anderson FA Jr, Wheeler HB, Goldberg RJ, Hosmer DW, Patwardhan NA, Jovanovic B, Forcier A, Dalen JE. A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism. The Worcester DVT Study. Arch Intern Med. 1991 May;151(5):933-8. — View Citation

Becattini C, Agnelli G, Salvi A, Grifoni S, Pancaldi LG, Enea I, Balsemin F, Campanini M, Ghirarduzzi A, Casazza F; TIPES Study Group. Bolus tenecteplase for right ventricle dysfunction in hemodynamically stable patients with pulmonary embolism. Thromb Res. 2010 Mar;125(3):e82-6. doi: 10.1016/j.thromres.2009.09.017. Epub 2009 Oct 14. — View Citation

Braaten JV, Goss RA, Francis CW. Ultrasound reversibly disaggregates fibrin fibers. Thromb Haemost. 1997 Sep;78(3):1063-8. — View Citation

Chatterjee S, Chakraborty A, Weinberg I, Kadakia M, Wilensky RL, Sardar P, Kumbhani DJ, Mukherjee D, Jaff MR, Giri J. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. JAMA. 2014 Jun 18;311(23):2414-21. doi: 10.1001/jama.2014.5990. — View Citation

Engelberger RP, Spirk D, Willenberg T, Alatri A, Do DD, Baumgartner I, Kucher N. Ultrasound-assisted versus conventional catheter-directed thrombolysis for acute iliofemoral deep vein thrombosis. Circ Cardiovasc Interv. 2015 Jan;8(1):e002027. doi: 10.1161/CIRCINTERVENTIONS.114.002027. — View Citation

Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, Jenkins JS, Kline JA, Michaels AD, Thistlethwaite P, Vedantham S, White RJ, Zierler BK; American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; American Heart Association Council on Peripheral Vascular Disease; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation. 2011 Apr 26;123(16):1788-830. doi: 10.1161/CIR.0b013e318214914f. Epub 2011 Mar 21. Erratum In: Circulation. 2012 Aug 14;126(7):e104. Circulation. 2012 Mar 20;125(11):e495. — View Citation

Kucher N, Boekstegers P, Muller OJ, Kupatt C, Beyer-Westendorf J, Heitzer T, Tebbe U, Horstkotte J, Muller R, Blessing E, Greif M, Lange P, Hoffmann RT, Werth S, Barmeyer A, Hartel D, Grunwald H, Empen K, Baumgartner I. Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation. 2014 Jan 28;129(4):479-86. doi: 10.1161/CIRCULATIONAHA.113.005544. Epub 2013 Nov 13. — View Citation

Kuo WT, Banerjee A, Kim PS, DeMarco FJ Jr, Levy JR, Facchini FR, Unver K, Bertini MJ, Sista AK, Hall MJ, Rosenberg JK, De Gregorio MA. Pulmonary Embolism Response to Fragmentation, Embolectomy, and Catheter Thrombolysis (PERFECT): Initial Results From a Prospective Multicenter Registry. Chest. 2015 Sep;148(3):667-673. doi: 10.1378/chest.15-0119. — View Citation

Kuo WT, Gould MK, Louie JD, Rosenberg JK, Sze DY, Hofmann LV. Catheter-directed therapy for the treatment of massive pulmonary embolism: systematic review and meta-analysis of modern techniques. J Vasc Interv Radiol. 2009 Nov;20(11):1431-40. doi: 10.1016/j.jvir.2009.08.002. — View Citation

Piazza G, Hohlfelder B, Jaff MR, Ouriel K, Engelhardt TC, Sterling KM, Jones NJ, Gurley JC, Bhatheja R, Kennedy RJ, Goswami N, Natarajan K, Rundback J, Sadiq IR, Liu SK, Bhalla N, Raja ML, Weinstock BS, Cynamon J, Elmasri FF, Garcia MJ, Kumar M, Ayerdi J, Soukas P, Kuo W, Liu PY, Goldhaber SZ; SEATTLE II Investigators. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism: The SEATTLE II Study. JACC Cardiovasc Interv. 2015 Aug 24;8(10):1382-1392. doi: 10.1016/j.jcin.2015.04.020. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Other Right ventricle (RV) to Left ventricle (LV) ratio Investigators will measure and compare the change between baseline and 30 days right ventricular diameter to left ventricular diameter (RV:LV ratio) on echocardiogram after PLST or ACDT 30 days
Other Pulmonary pressures Investigators will measure and compare the change between baseline and 30 days pulmonary pressures (mm Hg) with echocardiogram following therapy with PLST or ACDT therapy. 30 days
Primary Right ventricle (RV) to Left ventricle (LV) ratio Investigators will measure and compare the change between baseline and 48 hours right ventricular diameter to left ventricular diameter (RV:LV ratio) on echocardiogram after PLST or ACDT 48 hours
Primary Pulmonary pressures Investigators will measure and compare the change between baseline and 48 hours pulmonary pressures (mm Hg) with echocardiogram following therapy with PLST or ACDT therapy. 48 hours
Secondary Mortality Composite of all-cause mortality and fatal bleeding in-hospital and at 30-day 30 days
See also
  Status Clinical Trial Phase
Withdrawn NCT01950585 - Hydroxyurea in Pulmonary Arterial Hypertension Early Phase 1
Completed NCT00527163 - Role of Nitric Oxide in Malaria
Completed NCT03649932 - Enteral L Citrulline Supplementation in Preterm Infants - Safety, Efficacy and Dosing Phase 1
Recruiting NCT04554160 - Arrhythmias in Pulmonary Hypertension Assessed by Continuous Long-term Cardiac Monitoring
Enrolling by invitation NCT03683186 - A Study Evaluating the Long-Term Efficacy and Safety of Ralinepag in Subjects With PAH Via an Open-Label Extension Phase 3
Completed NCT01894035 - Non-interventional Multi-center Study on Patients Under Routine Treatment of Pulmonary Arterial Hypertension (PAH) With Inhaled Iloprost Using I-Neb as a Device for Inhalation
Not yet recruiting NCT04083729 - Persistent Pulmonary Hypertension After Percutaneous Mitral Commissurotomy N/A
Terminated NCT02246348 - Evaluating Lung Doppler Signals in Patients With Systemic Sclerosis (SSc) N/A
Terminated NCT02243111 - Detecting Pulmonary Arterial Hypertension (PAH) in Patients With Systemic Sclerosis (SSc) by Ultrasound N/A
Completed NCT02821156 - Study on the Use of Inhaled NO (iNO) N/A
Completed NCT02216279 - Phase-II Study of the Use of PulmoBind for Molecular Imaging of Pulmonary Hypertension Phase 2
Recruiting NCT01913847 - Safety and Efficacy Study of HGP1207 in Patients With Pulmonary Hypertension Phase 3
Completed NCT01615484 - Ex-vivo Perfusion and Ventilation of Lungs Recovered From Non-Heart-Beating Donors to Assess Transplant Suitability N/A
Completed NCT06240871 - Contrast Enhanced PA Pressure Measurements
Completed NCT02377934 - Evaluation of Radiation Induced Pulmonary Hypertension Using MRI in Stage III NSCLC Patients Treated With Chemoradiotherapy. A Pilot Study
Recruiting NCT01091012 - Effectiveness of the Vasodilator Test With Revatio, Made in Patients With Acute Pulmonary Hypertension Phase 3
Completed NCT01463514 - Noninvasive Determination of Cerebral Tissue Oxygenation in Pulmonary Hypertension N/A
Completed NCT02275793 - The Regulation of Pulmonary Vascular Resistance in Patients With Heart Failure
Completed NCT01484899 - Smoking: a Risk Factor for Pulmonary Arterial Hypertension? N/A
Completed NCT00739375 - The Effect of Blood Flow in the Maturing Arteriovenous Access for Hemodialysis on the Development of Pulmonary Hypertension. Phase 1