Clinical Trials Logo

Clinical Trial Summary

The goal of this observational study is to learn about the acute (days) changes in right ventricular functions caused by initiation of pharmacological therapies in patients with precapillary pulmonary hypertension. The main question it aims to answer is: • Course of afterload and intrinsic contractility throughout the hospital stay Participants will be equipped with a device for continuous monitoring and recording of the right ventricular pressure signal.


Clinical Trial Description

Pulmonary hypertension (PH) arises as a result of a vascular pathology affecting the pulmonary vessels, leading to an increase in resistance within the pulmonary circulation. The ability of the right ventricle to adapt to the elevated pressures caused by increased afterload is crucial for the progression and symptoms of the disease. This adaptation of the right ventricle to its afterload is referred to as ventriculoarterial coupling or RV-PA coupling, described by the ratio of contractility to afterload. Invasive pressure-volume loops (PV loops) are the gold standard for assessing RV-PA coupling. The loss of RV-PA coupling is considered a crucial factor in the development of right heart failure, the leading cause of mortality in patients with pulmonary hypertension. Therefore, reliable assessment of right cardiac function is essential for physicians to make informed decisions regarding further invasive diagnostics or therapy adjustments. Approved medications for the treatment of pulmonary arterial hypertension primarily induce pulmonary vasodilation, leading to a reduction in right ventricular afterload. The effects on right ventricular contractility and function, as represented by RV-PA coupling, are currently poorly understood and may not be consistent. In this study, 100 patients with PH requiring an inpatient stay for right heart catheterization will be equipped with a mobile, wireless system for invasive measurement of right ventricular pressure - the CorLog system (emka MEDICAL, Aschaffenburg, Germany). By combining continuously recorded pressure profiles with 3D echocardiographic volumetry, we will be able to generate PV loops and assess RV-PA coupling at various time points. The continuous monitoring of right ventricular pressure profiles throughout the entire hospital stay will allow us to capture the effects of newly initiated or expanded pulmonary vascular therapy on RV-PA coupling not only immediately but over several days. Furthermore, the 3D echocardiographic datasets will be analyzed using specialized software (ReVISION®, Argus Cognitive, Inc, Lebanon, NH) to mechanistically quantify the right ventricular contraction pattern and capture the immediate impact of pulmonary vasoreactive therapy on it. Additionally, a data pool will be created to validate the calculation of ejection fraction and RV-PA coupling based solely on pressure signals. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05935865
Study type Observational
Source University of Giessen
Contact Khodr Tello, MD
Phone +49 (0)641 985 56022
Email khodr.tello@innere.med.uni-giessen.de
Status Recruiting
Phase
Start date February 13, 2023
Completion date February 13, 2026

See also
  Status Clinical Trial Phase
Withdrawn NCT01950585 - Hydroxyurea in Pulmonary Arterial Hypertension Early Phase 1
Completed NCT00527163 - Role of Nitric Oxide in Malaria
Completed NCT03649932 - Enteral L Citrulline Supplementation in Preterm Infants - Safety, Efficacy and Dosing Phase 1
Recruiting NCT04554160 - Arrhythmias in Pulmonary Hypertension Assessed by Continuous Long-term Cardiac Monitoring
Enrolling by invitation NCT03683186 - A Study Evaluating the Long-Term Efficacy and Safety of Ralinepag in Subjects With PAH Via an Open-Label Extension Phase 3
Completed NCT01894035 - Non-interventional Multi-center Study on Patients Under Routine Treatment of Pulmonary Arterial Hypertension (PAH) With Inhaled Iloprost Using I-Neb as a Device for Inhalation
Not yet recruiting NCT04083729 - Persistent Pulmonary Hypertension After Percutaneous Mitral Commissurotomy N/A
Completed NCT02216279 - Phase-II Study of the Use of PulmoBind for Molecular Imaging of Pulmonary Hypertension Phase 2
Terminated NCT02243111 - Detecting Pulmonary Arterial Hypertension (PAH) in Patients With Systemic Sclerosis (SSc) by Ultrasound N/A
Terminated NCT02246348 - Evaluating Lung Doppler Signals in Patients With Systemic Sclerosis (SSc) N/A
Completed NCT02821156 - Study on the Use of Inhaled NO (iNO) N/A
Recruiting NCT01913847 - Safety and Efficacy Study of HGP1207 in Patients With Pulmonary Hypertension Phase 3
Completed NCT01615484 - Ex-vivo Perfusion and Ventilation of Lungs Recovered From Non-Heart-Beating Donors to Assess Transplant Suitability N/A
Completed NCT06240871 - Contrast Enhanced PA Pressure Measurements
Completed NCT02377934 - Evaluation of Radiation Induced Pulmonary Hypertension Using MRI in Stage III NSCLC Patients Treated With Chemoradiotherapy. A Pilot Study
Recruiting NCT01091012 - Effectiveness of the Vasodilator Test With Revatio, Made in Patients With Acute Pulmonary Hypertension Phase 3
Completed NCT01484899 - Smoking: a Risk Factor for Pulmonary Arterial Hypertension? N/A
Completed NCT02275793 - The Regulation of Pulmonary Vascular Resistance in Patients With Heart Failure
Completed NCT01463514 - Noninvasive Determination of Cerebral Tissue Oxygenation in Pulmonary Hypertension N/A
Completed NCT00739375 - The Effect of Blood Flow in the Maturing Arteriovenous Access for Hemodialysis on the Development of Pulmonary Hypertension. Phase 1