Clinical Trials Logo

Clinical Trial Summary

Pulmonary arterial hypertension (PAH) is a disorder of elevated pulmonary vascular resistance characterized by progressive remodeling and obliteration of vessels of the distal pulmonary circulation. Outcomes in PAH could be improved with earlier diagnosis, and with the early deployment of therapies before irreversible changes have occurred. This study tests the sensitivity of positron emission tomography (PET)-CT scanning with [89Zr]-bevacizumab, a radioisotope-conjugated anti-VEGF antibody for detecting pulmonary vascular remodeling in PAH disease. This test could enable non-invasive diagnosis early in the course of the disease, and potentially improve outcomes in PAH,


Clinical Trial Description

PAH is a disease of progressive remodeling and obliteration of the distal pulmonary vasculature. The overexpression of VEGF-A in the pulmonary vasculature of patients with PAH and animal models of disease is thought to reflect a process of disordered angiogenesis that is tightly coupled to disease progression. It is hypothesized that positron emission tomography (PET)-CT scan utilizing [89Zr]-bevacizumab, a radioisotope-conjugated humanized monoclonal antibody against VEGF-A, would provide a sensitive and specific molecular imaging modality to detect pulmonary vascular remodeling activity. To test this hypothesis the investigators propose a Phase I/II pilot study to enroll 10 patients with known severe idiopathic or familial PAH, 10 individuals with exercise-associated PAH (EPAH), thought to be a mild and early stage of PAH, and 10 healthy volunteers with no evidence of cardiopulmonary disease. This pilot study will compare standardized uptake values (SUV) for the retention of [89Zr]-bevacizumab in the distal pulmonary vasculature in these three populations. The kinetics of equilibration and wash-out of this probe will be assessed with sequential scans at 4 and 7 days following the injection of radionuclide. In patients with PAH or EPAH, repeat scans will be performed 1 year after the initial scan to assess whether changes in clinical status correlate with [89Zr]-bevacizumab retention. The ability of these protocols to discriminate between the lungs of healthy individuals versus patients with PAH or EPAH will be evaluated using the measure of peripheral lung tissue probe SUV, corresponding to distal pulmonary vessel uptake, normalized to the proximal aortic SUV, corresponding to the blood pool. These data will be used to define normative values for healthy controls versus PAH patients, and to generate cutoffs in signaling ratios with optimal sensitivity and specificity for disease detection. These normative ranges will be applied to the EPAH cohort to determine if this test retains sensitivity and specificity for a potentially milder, earlier form of PAH. This study is divided into 4 Aims: AIM 1: Test the hypothesis that expression of VEGF-A discerned by [89Zr]-bevacizumab imaging is increased in the distal pulmonary vascular bed in PAH patients compared to healthy individuals. AIM 2: Test the hypothesis that expression of VEGF-A discerned by [89Zr]-bevacizumab imaging is increased in the distal pulmonary vascular bed in patients with exercise-associated PAH compared to healthy individuals. AIM 3: Ascertain whether or not distal pulmonary vascular uptake of [89Zr]-bevacizumab correlates with clinical markers of PAH severity, including 6 minute walk distance, New York Heart Association functional class, right atrial pressure, mean pulmonary artery pressure, pulmonary vascular resistance, cardiac index, NT-proBNP, tricuspid annular plane systolic excursion (TAPSE) by echocardiography. AIM 4: Ascertain whether or not changes in distal pulmonary vascular uptake of [89Zr]-bevacizumab over 1 year in patients with PAH or EPAH correlates with changes in clinical status based on clinical markers of PAH severity. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03166306
Study type Interventional
Source Brigham and Women's Hospital
Contact
Status Completed
Phase Phase 1/Phase 2
Start date May 1, 2018
Completion date March 31, 2020

See also
  Status Clinical Trial Phase
Completed NCT04076241 - Effects of Adding Yoga Respiratory Training to Osteopathic Manipulative Treatment in Pulmonary Arterial Hypertension N/A
Completed NCT05521113 - Home-based Pulmonary Rehabilitation With Remote Monitoring in Pulmonary Arterial Hypertension
Recruiting NCT04972656 - Treatment With Ambrisentan in Patients With Borderline Pulmonary Arterial Hypertension N/A
Completed NCT04908397 - Carnitine Consumption and Augmentation in Pulmonary Arterial Hypertension Phase 1
Active, not recruiting NCT03288025 - Pulmonary Arterial Hypertension Improvement With Nutrition and Exercise (PHINE) N/A
Completed NCT01959815 - Novel Screening Strategies for Scleroderma PAH
Recruiting NCT04266197 - Vardenafil Inhaled for Pulmonary Arterial Hypertension PRN Phase 2B Study Phase 2
Active, not recruiting NCT06092424 - High Altitude (HA) Residents With Pulmonary Vascular Diseseases (PVD), Pulmonary Artery Pressure (PAP) Assessed at HA (2840m) vs Sea Level (LA) N/A
Enrolling by invitation NCT03683186 - A Study Evaluating the Long-Term Efficacy and Safety of Ralinepag in Subjects With PAH Via an Open-Label Extension Phase 3
Terminated NCT02060487 - Effects of Oral Sildenafil on Mortality in Adults With PAH Phase 4
Terminated NCT02253394 - The Combination Ambrisentan Plus Spironolactone in Pulmonary Arterial Hypertension Study Phase 4
Withdrawn NCT02958358 - FDG Uptake and Lung Blood Flow in PAH Before and After Treatment With Ambrisentan N/A
Terminated NCT01953965 - Look at Way the Heart Functions in People With Pulmonary Hypertension (PH) Who Have Near Normal Right Ventricle (RV) Function and People With Pulmonary Hypertension Who Have Impaired RV Function. Using Imaging Studies PET Scan and Cardiac MRI. Phase 2
Unknown status NCT01712997 - Study of the Initial Combination of Bosentan With Iloprost in the Treatment of Pulmonary Hypertension Patients Phase 3
Not yet recruiting NCT01649739 - Vardenafil as add-on Therapy for Patients With Pulmonary Hypertension Treated With Inhaled Iloprost Phase 4
Withdrawn NCT01723371 - Beta Blockers for Treatment of Pulmonary Arterial Hypertension in Children Phase 1/Phase 2
Completed NCT01548950 - Drug Therapy and Surgery in Congenital Heart Disease With Pulmonary Hypertension N/A
Completed NCT01165047 - Nitric Oxide, GeNO Nitrosyl Delivery System Phase 2
Completed NCT00963027 - Effect of Esomeprazole on the Pharmacokinetics of Oral Treprostinil Phase 1
Completed NCT00942708 - Safety and Efficacy of Fluoxetine in Pulmonary Arterial Hypertension Phase 2