Clinical Trials Logo

Clinical Trial Summary

The purpose of this research study is to find out if a new anti-cancer drug, dasatinib (Sprycel®), previously approved for treatment of some forms of leukemia, will be safe and helpful in treating patients with hormone-refractory prostate cancer.

This is a research study because the study drug, dasatinib (Sprycel®), has not been evaluated for safety or effectiveness in patients with hormone-refractory prostate cancer. The drug is approved by the Food and Drug Administration for treatment of some forms of leukemia; thus, dasatinib (Sprycel®) is not an investigational drug. It has been given safely to hundreds of patients already. However its safety and usefulness in this study population (prostate cancer) is unknown.

Subjects who agree to participate will take 150mg (3 pills) of dasatinib (Sprycel®) daily by mouth for as long as the drug benefits them. During this time, the subject will periodically return to the office for blood/urine tests, X-rays, imaging scans, and/or to complete questionnaires.


Clinical Trial Description

Metastatic prostate adenocarcinoma is initially dependent on exogenous androgens for survival and growth; hence, androgen blockade is a key initial intervention for these patients. Whether by orchiectomy or by biochemical blockade, androgen deprivation produces objective regression of prostate cancer in >90% of patients for an average of 1.5-2yrs. Afterwards, however, the remaining prostate cancer cells become independent of exogenous androgen and resume their growth. At this stage the disease is referred to as hormone-refractory prostate cancer (HRPC).

Treatment for HRPC remains unsatisfactory. Only two interventions have been proven through randomized, prospective studies to confer a survival advantage. Docetaxel administered along with prednisone or estramsutine increases overall survival by approximately 3 months, compared with patients treated with mitoxantrone (1,2). In addition, a cell-based vaccine (APC8015) has recently been shown to confer a similar survival advantage for patients with HRPC (3). In 127 patients with HRPC randomized to receive the APC8015 vaccine or unactivated autologous peripheral blood mononuclear cells, there was a 4.5-month increase in median overall survival for the treated cohort (p = 0.01). Thus additional therapeutic tools are needed.

Although the mechanisms whereby androgen-independence develops are not yet fully clarified (7), it is known that malignant progression of prostate cancer involves upregulation of autocrine growth factors and their receptors (8). The process of autocrine reprogramming facilitates autonomous growth and metastasis of the tumor cells. For this reason many of the major novel therapeutic approaches for prostate cancer, currently in clinical trials, are directed against growth factor signaling pathways involving tyrosine kinase receptors and their downstream signaling messengers. Among these, recent evidence suggests a centrol role for the non-receptor tyrosine kinase c-src, in the development, growth, and metastasis of many human cancers (9,10), including prostate carcinomas. Several SFKs are present in prostate cancer cells, including c-src, yes, lck, and lyn (11). SFKs are thought to mediate the signaling pathways of several growth factors and stressors, such as lysophosphatidic acid, bombesin, androgens, and hypoxia (12-15). In prostate cancer cells that are androgen-independent, activation of SFKs is constitutive, rather than ligand-regulated (16). SFKs in turn regulate such diverse prostate cell pathways as VEGF production (15), and FAK signaling (17). Among the response phenotypes mediated by SFKs include cell spreading and attachment, migration and invasion. Genetic and pharmacologic inhibitors of SFKs have been tested on prostate cancer cell lines. Thus two pyrrolopyrimidine c-src inhibitors were shown to inhibit production of the protease MMP-9, as well as the functional ability of the cells to invade Matrigel (18). These phenotypes occurred at inhibitor concentrations that did not significantly affect cell proliferation. In contrast a peptide inhibitor of the lyn kinase inhibited the proliferation of prostate cancer cell lines in culture, and reduced the growth of DU145 xenografts in nude mice (19). Thus a spectrum of responses have been seen in prostate cancer cells or tumors treated with SFK inhibitors, including inhibition of growth. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT00570700
Study type Interventional
Source University of California, Irvine
Contact
Status Completed
Phase Phase 2
Start date July 2007
Completion date February 2012

See also
  Status Clinical Trial Phase
Recruiting NCT05613023 - A Trial of 5 Fraction Prostate SBRT Versus 5 Fraction Prostate and Pelvic Nodal SBRT Phase 3
Recruiting NCT05540392 - An Acupuncture Study for Prostate Cancer Survivors With Urinary Issues Phase 1/Phase 2
Recruiting NCT05156424 - A Comparison of Aerobic and Resistance Exercise to Counteract Treatment Side Effects in Men With Prostate Cancer Phase 1/Phase 2
Completed NCT03177759 - Living With Prostate Cancer (LPC)
Completed NCT01331083 - A Phase II Study of PX-866 in Patients With Recurrent or Metastatic Castration Resistant Prostate Cancer Phase 2
Recruiting NCT05540782 - A Study of Cognitive Health in Survivors of Prostate Cancer
Active, not recruiting NCT04742361 - Efficacy of [18F]PSMA-1007 PET/CT in Patients With Biochemial Recurrent Prostate Cancer Phase 3
Completed NCT04400656 - PROState Pathway Embedded Comparative Trial
Completed NCT02282644 - Individual Phenotype Analysis in Patients With Castration-Resistant Prostate Cancer With CellSearch® and Flow Cytometry N/A
Recruiting NCT06305832 - Salvage Radiotherapy Combined With Androgen Deprivation Therapy (ADT) With or Without Rezvilutamide in the Treatment of Biochemical Recurrence After Radical Prostatectomy for Prostate Cancer Phase 2
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT05761093 - Patient and Physician Benefit/ Risk Preferences for Treatment of mPC in Hong Kong: a Discrete Choice Experiment
Completed NCT04838626 - Study of Diagnostic Performance of [18F]CTT1057 for PSMA-positive Tumors Detection Phase 2/Phase 3
Recruiting NCT03101176 - Multiparametric Ultrasound Imaging in Prostate Cancer N/A
Completed NCT03290417 - Correlative Analysis of the Genomics of Vitamin D and Omega-3 Fatty Acid Intake in Prostate Cancer N/A
Completed NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Completed NCT01497925 - Ph 1 Trial of ADI-PEG 20 Plus Docetaxel in Solid Tumors With Emphasis on Prostate Cancer and Non-Small Cell Lung Cancer Phase 1
Recruiting NCT03679819 - Single-center Trial for the Validation of High-resolution Transrectal Ultrasound (Exact Imaging Scanner ExactVu) for the Detection of Prostate Cancer
Completed NCT03554317 - COMbination of Bipolar Androgen Therapy and Nivolumab Phase 2
Completed NCT03271502 - Effect of Anesthesia on Optic Nerve Sheath Diameter in Patients Undergoing Robot-assisted Laparoscopic Prostatectomy N/A