Clinical Trials Logo

Clinical Trial Summary

The objective of the present proposal is to compare the clinical, endocrine and metabolic effects of therapy with combination saxagliptin and metformin to saxagliptin and metformin monotherapy in women with PCOS and prediabetic hyperglycemia (IFG, IGT or IFG/IGT). Saxagliptin is an oral dipeptidyl peptidase IV (DPP-4) inhibitor whose mechanism of action is to prolong the duration of blood glucagon-like peptide (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) levels by inhibiting their degradation and thereby augmenting insulin secretion. This study will serve as a pilot investigation to open perspectives for future studies to explore the potential of combining anti-diabetic drugs with different mechanisms of action in in patients with PCOS and impaired glucose regulation (IGR), especially ones for whom standard treatment with metformin is less effective.


Clinical Trial Description

A major change in the treatment of polycystic ovary syndrome (PCOS) was initiated by the understanding that many women with this disorder compensate insulin resistance with a period of hypersecretion of insulin by the pancreatic ß-cell. In addition, women with PCOS have significantly higher basal insulin secretory rates, reduced insulin clearance rates, and attenuated secretory responses to meals. The decreased postprandial response in these patients resembles the ß-cell dysfunction of type 2 diabetes (DM2) and may account for the increased incidence of impaired glucose tolerance in this population. Current research has shown that the use of diabetes management practices aimed at reducing insulin resistance and hyperinsulinemia (such as weight reduction and the administration of oral antidiabetic drugs) in women with PCOS can not only improve glucose and lipid metabolism but can also reverse testosterone abnormalities and restore menstrual cycles.

The optimal modality for long-term treatment of PCOS should positively influence androgen synthesis, sex hormone binding globulin (SHBG) production, the lipid profile, insulin sensitivity, and clinical symptoms including hirsutism and irregular menstrual cycles. Improvement of insulin sensitivity may reverse some of the demand on the ß-cell and promote improvement in glucose tolerance. However, while insulin resistance plays a key role in the predisposition to diabetes in PCOS; defects in insulin secretion also appear to contribute to its development. Preferably therapy for women with PCOS should also produce no weight gain, hypoglycemia, or other limiting or unmanageable side effects as well as preserve or enhance ß-cell function.

Presently, in the literature, there are described new, more efficient methods of diabetes prevention in groups with a high risk of this disorder, which involve both, lifestyle modification and pharmacological therapies. Lifestyle intervention was found to reduce the incidence of type 2 diabetes by 58% and metformin by 31% as compared with placebo. The use of rosiglitazone in subjects with prediabetes resulted in a 60% reduction of the diabetes incidence rate. Whether pharmacological therapy should be prescribed for diabetes prevention is an open question given that waiting to add drug therapy until diabetes develops can arrest β-cell decline, albeit at a lower level of β-cell function than when medications are used for prevention. Studies are needed for optimal postpartum and long-term health of women who have had GDM. Considerable recent evidence suggests that incretin-based therapies may be useful for the prevention of DM2. Whereas native GLP-1 has a very short half-life, continuous infusion of GLP-1 improves first and second-phase insulin secretion suggesting that early GLP-1 therapy may preserve ß-cell function in subjects with IGT or mild DM2. Incretin mimetics and inhibitors of the protease dipeptidyl peptidase (DPP)-4 use the anti-diabetic properties of the incretin hormone, glucagon-like peptide (GLP)-1 hormone to augment glucose-induced insulin secretion in a highly glucose-dependent manner, thus preventing GLP-1 alone from provoking hypoglycemia. Additional beneficial effects of GLP-1 on endocrine pancreatic islets are that it 1) supports the synthesis of proinsulin to replenish insulin stores in β-cells; 2) reduces the rate of β-cell apoptosis when islets are incubated in a toxic environment (glucotoxicity, lipotoxicity, cytotoxic cytokines); and 3) promotes differentiation of precursor cells with the ability to develop into β-cells and proliferation of β-cell lines, and in whole animals (rodent studies), this leads to an increased β-cell mass within a few days or weeks. Furthermore, GLP-1 can lower glucagon concentrations, i.e., induce α-cells to respond again to the inhibitory action of hyperglycemia, while leaving the counterregulatory glucagon responses undisturbed, as in the case of hypoglycemia. Additional activities of GLP-1 are the deceleration of gastric emptying, which slows the entry of nutrients into the circulation after meals, a reduction in appetite, and earlier induction of satiety, leading to weight reduction with chronic exposure. Inhibition of DPP-4 increases the concentration of GLP-1 and may potentially delay disease progression in prediabetes considering the β-cell function improvement in DM2 and β-cell mass shown to increase in animal models. The objective of the present proposal is to compare the clinical, endocrine and metabolic effects of therapy with combination saxagliptin and metformin to saxagliptin and metformin monotherapy in women with PCOS and prediabetic hyperglycemia (IFG, IGT or IFG/IGT). Since aberrant first-phase insulin secretion and impaired suppression of endogenous glucose production are major contributors to postprandial hyperglycemia and development of DM2, the effects of saxagliptin to target these defects, and normalize glucose excursions are likely to be clinically significant in patients with PCOS and impaired glucose regulation. This study will evaluate the impact of treatment with combination of metformin and saxagliptin (Kombiglyze XR) compared to saxagliptin (Onglyza) or metformin XR (Glucophage XR) monotherapy over a 16-week period on glycemia and insulin action (fasting, 2 hour, and mean stimulated glucose levels, insulin sensitivity and secretion), hyperandrogenism (total T, DHEAS, SHBG and calculated free androgen index [FAI]), cardiometabolic markers (lipid profile, blood pressure), and anthropometric measurements (BMI, waist: hip ratio, absolute weight) in patients with PCOS and prediabetic hyperglycemia ;


Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Parallel Assignment, Masking: Single Blind (Investigator), Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT02022007
Study type Interventional
Source Woman's
Contact
Status Completed
Phase Phase 3
Start date March 2014
Completion date October 2016

See also
  Status Clinical Trial Phase
Completed NCT03142633 - MicroRNA as Biomarkers for Development of Metabolic Syndrome in Women With Polycystic Ovary Syndrome
Completed NCT06158932 - A Single Group Study to Evaluate the Effects of a Myo-Inositol and D-Chiro Inositol Supplement on Symptoms Associated With Polycystic Ovary Syndrome and Hormone Imbalance N/A
Completed NCT03644524 - Heat Therapy and Cardiometabolic Health in Obese Women N/A
Active, not recruiting NCT02500147 - Metformin for Ectopic Fat Deposition and Metabolic Markers in Polycystic Ovary Syndrome (PCOS) Phase 4
Completed NCT04932070 - Berberine and Polycystic Ovary Syndrome N/A
Suspended NCT03652987 - Endocrine and Menstrual Disturbances in Women With Polycystic Ovary Syndrome (PCOS)
Completed NCT03480022 - Liraglutide 3mg (Saxenda) on Weight, Body Composition, Hormonal and Metabolic Parameters in Obese Women With PCOS Phase 3
Active, not recruiting NCT03043924 - Functional Study of the Hypothalamus in Magnetic Resonance Imaging (MRI) in Polycystic Ovary Syndrome (PCOS) N/A
Completed NCT05246306 - Aerobic Capacity and Physical Fitness Level of Adolescents With PCOS
Completed NCT05981742 - Effects of Combined Metformin and Cabergoline in Comparison With Metformin Only Therapy on Ovarian and Hormonal Activities in Iraqi Patients With PCOS Phase 2
Completed NCT05702957 - Letrozole vs Clomiphene Citrate for Induction of Ovulation in Women With Polycystic Ovarian Syndrome Phase 2/Phase 3
Completed NCT05029492 - Effect of Visceral Manipulation on PCOS N/A
Not yet recruiting NCT02255578 - Endobarrier Treatment in Women With PCOS Phase 3
Completed NCT02924025 - Motivational Interviewing as an Intervention for PCOS N/A
Completed NCT02098668 - Mathematical Model for the Human Menstrual Cycle, Endocrinological Diseases and Fertility Treatment-PAEON N/A
Not yet recruiting NCT00883259 - Metformin and Gestational Diabetes in High-risk Patients: a RCTs Phase 4
Withdrawn NCT01638988 - Clomifene Citrate Versus Metformin in First-line Treatment of Infertility in Patients With Polycystic Ovary Syndrome and a Resistance to Insulin Phase 3
Completed NCT01462864 - Development of a Structured Education Programme for Women With Polycystic Ovary Syndrome N/A
Recruiting NCT01431352 - Letrozole Versus Chinese Herbal Medicine on Polycystic Ovary Syndrome (PCOS) N/A
Completed NCT00989781 - Mechanisms of Increased Androgen Production Among Women With Polycystic Ovary Syndrome N/A