Clinical Trials Logo

Clinical Trial Summary

Purpose: Peripheral artery disease (PAD) is associated with elevated oxidative stress, and oxidative stress has been implicated as the cause of reduced endothelial reactivity in individuals with PAD. Endothelial function is important because the endothelium contributes to the dilation of arteries during exercise, thereby implicating impaired endothelial function as a mechanism contributing to exacerbated exercise-induced ischemia. Therefore, the purpose of this study is to test the hypothesis that acute exogenous diroximel fumarate (Vumerity) intake will improve antioxidant capacity, thereby reducing oxidative stress and improving vascular function and walking capacity in those with PAD. Eligibility: Individuals with PAD will be deemed eligible for this study if they 1) are 50-75 years old and postmenopausal, 2) have a positive history of exercise-limiting claudication (Fontaine II or III), 3) do not have renal impairments, 4) do not have Fontaine stage IV PAD, and 5) are not currently pregnant or nursing. Age-matched controls will be deemed eligible for this study if they 1) are 50-75 years old and postmenopausal, 2) have an ABI greater than 0.9 (no PAD), 3) do not have exercise-limiting diseases or injuries, 4) do not have renal impairments, and 5) are not currently pregnant or nursing. Intervention and Evaluation: During this study, participants will be administered diroximel fumarate or a placebo, and the acute effects of diroximel fumarate on vascular function and walking capacity will be assessed. Vascular function and walking capacity will be assessed with flow-mediated dilation, arterial stiffness, head-up tilt test, blood biomarkers, near-infrared spectroscopy, and a treadmill test. Follow-up: There will be a follow-up visit to assess blood work after diroximel fumarate.


Clinical Trial Description

Peripheral artery disease (PAD), which affects an estimated 200 million individuals worldwide, is characterized by the development of atherosclerotic plaques in the conduit arteries of the back and legs, and leads to exercise-limiting ischemic muscle pain, soft tissue ulcers, gangrene, and ultimately amputation. The pathophysiology of PAD is multifaceted and includes macro-vascular dysfunction, micro-vascular dysfunction, and muscle myopathy. A popular hypothesis for the tissue damage that occurs after conduit artery stenosis is the ischemia-reperfusion hypothesis. Under this hypothesis, intermittent periods of ischemia and hypoxia, followed by rapid oxygen reperfusion, ultimately leads to the production of excessive reactive oxygen species (ROS) in the ischemic tissues, and the intermittent elevations in ROS may exacerbate the degradation of mitochondrial function. Damage to mitochondria may then lead to greater ROS production, thereby creating a vicious cycle of oxidative stress damage and subsequent damage to muscles and blood vessels distal to a stenosis. In alignment with this hypothesis, it has been demonstrated that those with PAD have impaired blood vessel function, demonstrated by low endothelial reactivity. Furthermore, it seems that the reduced vascular reactivity in those with PAD may be partially caused by elevated ROS production, since the introduction of mitochondrial targeted antioxidants and free nitrates can improve vascular reactivity in those with PAD. Reduced endothelial reactivity may have deleterious effects for those with PAD during walking, since the endothelium dilates the arteries when shear increases at the onset of exercise, thereby highlighting a potential mechanism that may exacerbate exercise-induced ischemia. Interestingly, improvements in vascular reactivity mediated by mitochondrial derived antioxidants and free nitrates are paralleled by improvements in walking performance. This highlights the potential importance of ROS management in the treatment of those with PAD and may indicate an effective pharmacological target to improve vascular health and functional capacity in those with PAD. A potentially effective pharmacological target for oxidative stress management in those with PAD may be the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) complex because NRF2 is directly involved in the cellular response to oxidative stress. Keap1 promotes the ubiquitination and destruction of intracellular NRF2, which keeps the concentration of NRF2 low in the cytosol under normal conditions. However, molecules that react with Keap1, such as reactive oxygen species, impede Keap1s ability to prevent NRF2 from accumulating. When NRF2 accumulates, it is translocated into the cell nucleus and acts as a transcription factor for several cellular antioxidants, which bind to molecules that cause oxidative stress, thereby reducing cellular oxidative damage. Therefore, substances that target the Keap1-NRF2 complex may be useful for reducing oxidative stress in those with PAD. Of note, diroximel fumarate is a compound that directly interacts with the Keap1-NRF2 complex by its derivative monomethyl fumarate, and diroximel fumarate has been shown to reduce inflammation via this mechanism in those with multiple sclerosis. Therefore, the investigators postulate that diroximel fumarate may increase antioxidant capacity in those with PAD via the NRF2 mechanism, which may lead to improved endothelial function and walking capacity. However, there are currently no studies that have investigated the effects of acute diroximel fumarate intake on vascular function and walking capacity in individuals with PAD. Therefore, the investigators propose to test the hypothesis that acute exogenous diroximel fumarate intake will improve micro- and macro-vascular function, leg skeletal muscle mitochondrial function, and walking capacity in participants with PAD. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06319339
Study type Interventional
Source University of Nebraska
Contact Song-Young Park, PhD
Phone 402-554-3374
Email song-youngpark@unomaha.edu
Status Not yet recruiting
Phase Early Phase 1
Start date August 2024
Completion date August 2025

See also
  Status Clinical Trial Phase
Recruiting NCT06032065 - SMART Exercise for PAD Phase 3
Active, not recruiting NCT03987061 - MOTIV Bioresorbable Scaffold in BTK Artery Disease N/A
Recruiting NCT03506633 - Impacts of Mitochondrial-targeted Antioxidant on Peripheral Artery Disease Patients N/A
Active, not recruiting NCT03506646 - Dietary Nitrate Supplementation and Thermoregulation N/A
Active, not recruiting NCT04677725 - NEtwork to Control ATherothrombosis (NEAT Registry)
Recruiting NCT05961943 - RESPONSE-2-PAD to Reduce Sedentary Time in Peripheral Arterial Disease Patients N/A
Recruiting NCT06047002 - Personalised Antiplatelet Therapy for Patients With Symptomatic Peripheral Arterial Disease
Completed NCT03185052 - Feasibility of Outpatient Care After Manual Compression in Patients Treated for Peripheral Arterial Disease by Endovascular Technique With 5F Sheath Femoral Approach N/A
Recruiting NCT05992896 - A Study of Loco-Regional Liposomal Bupivacaine Injection Phase 4
Completed NCT04635501 - AbsorbaSeal (ABS 5.6.7) Vascular Closure Device Trial N/A
Recruiting NCT04584632 - The Efemoral Vascular Scaffold System (EVSS) for the Treatment of Patients With Symptomatic Peripheral Vascular Disease From Stenosis or Occlusion of the Femoropopliteal Artery N/A
Withdrawn NCT03994185 - The Merit WRAPSODY™ Endovascular Stent Graft for Treatment of Iliac Artery Occlusive Disease N/A
Withdrawn NCT03538392 - Serranator® Alto Post Market Clinical Follow Up (PMCF) Study
Recruiting NCT02915796 - Autologous CD133(+) Cells as an Adjuvant to Below the Knee Percutaneous Transluminal Angioplasty Phase 1
Active, not recruiting NCT02900924 - Observational Study to Evaluate the BioMimics 3D Stent System: MIMICS-3D
Completed NCT02901847 - To Evaluate the Introduction of a Public Health Approach to Peripheral Arterial Disease (PAD) Using National Centre for Sport and Exercise Medicine Facilities. N/A
Withdrawn NCT02126540 - Trial of Pantheris System, an Atherectomy Device That Provides Imaging While Removing Plaque in Lower Extremity Arteries N/A
Not yet recruiting NCT02455726 - Magnesium Oral Supplementation to Reduce Pain Inpatients With Severe Peripheral Arterial Occlusive Disease N/A
Not yet recruiting NCT02387450 - Reduced Cardiovascular Morbi-mortality by Sildenafil in Patients With Arterial Claudication Phase 2/Phase 3
Completed NCT02384980 - Saving Life and Limb: FES for the Elderly With PAD Phase 1