Clinical Trials Logo

Clinical Trial Summary

Parkinson's disease (PD) is a common neurodegenerative disorder affecting approximately 80,000 Veterans, representing a priority area for VA research. Current medicines for PD only improve symptoms, treatments that slow disease progression are needed, and earlier diagnosis of PD may be the key to their development. PD symptoms can be mimicked by medicines (most commonly antipsychotic drugs that block dopamine), and some of these patients actually have underlying "prodromal" PD that was "unmasked" years before it would have caused symptoms. This problem is increasing as these medicines are now used for common conditions including post-traumatic stress disorder and depression. The investigators will identify prodromal PD in patients with drug-induced symptoms using brain scans. These patients will be enrolled in a randomized clinical trial of aerobic exercise which slows progression in animal models of PD and has other health benefits. The investigators will measure the effect of exercise on symptoms, disease progression (using brain scans) and markers of PD risk (using blood tests). These studies will improve early PD diagnosis and potentially identify a way to slow progression of PD.


Clinical Trial Description

Parkinson's disease (PD) is an incurable neurodegenerative disorder affecting approximately 1 million US adults and about 80,000 Veterans. PD causes significant morbidity due to motor and non-motor symptoms across its prolonged course with an annual economic burden of $14 billion in the US alone. Motor symptoms associated with loss of dopaminergic neurons in PD may be temporarily improved with dopamine replacing medicines, but disease-modifying therapies that delay or prevent neuronal loss are lacking and sorely needed. Exercise is promising as a disease-modifying therapy because it protects dopaminergic neurons in animal models of PD and has been associated with measures of neuroplasticity in PD patients. Unfortunately, more than half of dopaminergic neurons in the substantia nigra are lost before motor symptoms occur making it difficult to identify patients early enough to benefit from potentially disease-modifying therapies. Early "prodromal" PD can be identified using non-motor features including olfactory dysfunction and other biomarkers such as dopamine transporter (DaT) brain imaging abnormalities that are apparent years before motor symptoms. However, these strategies would be difficult and costly to implement on a population level without first identifying high-risk individuals for screening. Commonly prescribed dopamine blocking antipsychotic drugs cause debilitating PD-like motor dysfunction that is difficult to treat, and in some patients this finding may serve as a "stress test" for failing dopaminergic networks unmasking symptoms long before they would normally appear. Identifying prodromal PD among drug-induced parkinsonism patients offers a unique and unexplored opportunity for early intervention. In the proposed studies, the investigators will employ a tiered screening strategy with inexpensive and non-invasive olfactory testing in drug-induced parkinsonism patients followed by DaT imaging in individuals with olfactory impairment to identify a cohort of patients with presumed prodromal PD. Subjects with presumed prodromal PD will then be randomized to a home-based exercise intervention ({5} times weekly aerobic walking confirmed by remote activity monitors) or no intervention. In this cohort, the investigators will assess: 1) Short-term symptomatic effects of exercise on motor function in drug-induced parkinsonism using standard clinical measures (Unified Parkinson's Disease Rating Scale) and quantitative gait assessments after 8 weeks of intervention; 2) a potential disease-modifying effect after 52 weeks of exercise by comparing the rate of change in quantitative DaT imaging; and 3) the mechanisms and biochemical correlates of exercise-induced changes using a panel of serum biomarkers implicated in exercise and/or PD risk including brain-derived neurotrophic factor, uric acid, and apolipoproteinA1. Differences in the rate of change between groups will be assessed using independent samples t-tests and linear mixed-effects models adjusting for age and gender. The investigators' preliminary data demonstrates a strong association between olfactory impairment and abnormal DaT imaging in drug-induced parkinsonism. Based on power calculations allowing for 20% dropout, the investigators will screen approximately 250 drug-induced parkinsonism subjects using olfactory testing, with the expectation that approximately 88 will have abnormal DaT imaging and agree to participate in the intervention trial. Antipsychotic drugs are widely prescribed for a growing list of approved indications and off-label uses including bipolar disorder, depression and post-traumatic stress disorder. Studying drug-induced parkinsonism patients with prodromal PD will allow us to identify which individuals are at risk, characterize the natural history of progression and evaluate appropriate management strategies at the earliest stages of PD. Exercise as a putative disease-modifying therapy offers significant advantages including cost, ease of access and lack of toxicity compared with unproven pharmacologic interventions especially if offered early enough to have meaningful clinical impact. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02598973
Study type Interventional
Source VA Office of Research and Development
Contact
Status Active, not recruiting
Phase Phase 1/Phase 2
Start date February 1, 2016
Completion date January 31, 2022

See also
  Status Clinical Trial Phase
Completed NCT02915848 - Long-term Stability of LFP Recorded From the STN and the Effects of DBS
Recruiting NCT03648905 - Clinical Laboratory Evaluation of Chronic Autonomic Failure
Terminated NCT02688465 - Effect of an Apomorphine Pump on the Quality of Sleep in Parkinson's Disease Patients (POMPRENELLE). Phase 4
Completed NCT05040048 - Taxonomy of Neurodegenerative Diseases : Observational Study in Alzheimer's Disease and Parkinson's Disease
Active, not recruiting NCT04006210 - Efficacy, Safety and Tolerability Study of ND0612 vs. Oral Immediate Release Levodopa/Carbidopa (IR-LD/CD) in Subjects With Parkinson's Disease Experiencing Motor Fluctuations Phase 3
Completed NCT02562768 - A Study of LY3154207 in Healthy Participants and Participants With Parkinson's Disease Phase 1
Completed NCT00105508 - Sarizotan HC1 in Patients With Parkinson's Disease Suffering From Treatment-associated Dyskinesia Phase 3
Completed NCT00105521 - Sarizotan in Participants With Parkinson's Disease Suffering From Treatment Associated Dyskinesia Phase 3
Recruiting NCT06002581 - Repetitive Transcranial Magnetic Stimulation(rTMS) Regulating Slow-wave to Delay the Progression of Parkinson's Disease N/A
Completed NCT02236260 - Evaluation of the Benefit Provided by Acupuncture During a Surgery of Deep Brain Stimulation N/A
Completed NCT00529724 - Body Weight Gain, Parkinson, Subthalamic Stimulation Phase 2
Active, not recruiting NCT05699460 - Pre-Gene Therapy Study in Parkinson's Disease and Multiple System Atrophy
Completed NCT03703570 - A Study of KW-6356 in Patients With Parkinson's Disease on Treatment With Levodopa-containing Preparations Phase 2
Completed NCT03462680 - GPR109A and Parkinson's Disease: Role of Niacin in Outcome Measures N/A
Completed NCT02837172 - Diagnosis of PD and PD Progression Using DWI
Not yet recruiting NCT04046276 - Intensity of Aerobic Training and Neuroprotection in Parkinson's Disease N/A
Recruiting NCT02952391 - Assessing Cholinergic Innervation in Parkinson's Disease Using the PET Imaging Marker [18F]Fluoroethoxybenzovesamicol N/A
Active, not recruiting NCT02937324 - The CloudUPDRS Smartphone Software in Parkinson's Study. N/A
Completed NCT02927691 - Novel Management of Airway Protection in Parkinson's Disease: A Clinical Trial Phase 2
Completed NCT02874274 - Vaccination Uptake (VAX) in PD N/A