Clinical Trials Logo

Clinical Trial Summary

Deep brain stimulation (DBS) is an FDA approved, and widely used method for treating the motor symptoms of Parkinson's disease (PD), Essential Tremor (ET), Dystonia and Obsessive Compulsive disorder (OCD). Over 100,000 patients worldwide have now been implanted with DBS devices. Current approved methods to locate the DBS target regions in the brain use a combination of stereotactic imaging techniques and measurements of the electrical activity of brain cells. As part of the standard clinical technique, electrical data are collected from individual nerve cells. The target brain region emits unique electrical signals. At certain brain locations, during DBS surgery, additional electrical data that are generated in response to sound will be collected. Regions of the brain that have a decreased response to repeated sound (auditory gating) may be important DBS targets for improving thinking. The aims are (i) during DBS surgery, in addition to EEG, use microelectrodes in the brain to find brain regions, along the normal path to the DBS target, where auditory gating occurs and then (ii) determine if stimulation of the identified region(s) alters auditory gating measured by EEG. Also an additional aim (iii) is to measure electrical activity at the scalp with EEG to characterize auditory gating in patients before and after DBS surgery and also a healthy control population.


Clinical Trial Description

Deep brain stimulation (DBS) is an FDA approved, and widely used method for treating the motor symptoms of Parkinson's disease (PD), Essential Tremor (ET), Dystonia and Obsessive Compulsive disorder (OCD). Over 100,000 patients worldwide have now been implanted with DBS devices. Current approved methods to locate the DBS target regions in the brain (subthalamic nucleus (STN) for PD) use a combination of stereotactic imaging techniques and measurements of the electrical activity of brain cells. As part of the standard clinical technique, electrical data are collected from individual nerve cells --in a procedure called microelectrode recording (MER). The target brain region emits unique electrical signals that are detected by MER during the standard DBS surgery. MER is done at stops along the way to the target. At the stops during DBS surgery, additional electrical data that are generated in response to sound will be collected. Regions of the brain that have a decreased response after repeated sound (auditory gating) may be important DBS targets for improving thinking. The aims are to:(Aim 1A) during DBS surgery, in addition to EEG, use microelectrodes in the brain to measure electrical activity with single unit activity (SUA) and local field potentials (LFP) to find brain regions along the path to the DBS target where auditory gating occurs (Aim 1A) and then determine if stimulation of the identified region(s) alters auditory gating measured by EEG(Aim 1B); and (Aim 2) measure electrical activity at the scalp with electroencephalography (EEG) to characterize auditory gating in patients before and after DBS surgery and also a healthy control population. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02320266
Study type Observational
Source University of Colorado, Denver
Contact
Status Enrolling by invitation
Phase
Start date December 2014
Completion date December 2025

See also
  Status Clinical Trial Phase
Completed NCT02915848 - Long-term Stability of LFP Recorded From the STN and the Effects of DBS
Recruiting NCT03648905 - Clinical Laboratory Evaluation of Chronic Autonomic Failure
Terminated NCT02688465 - Effect of an Apomorphine Pump on the Quality of Sleep in Parkinson's Disease Patients (POMPRENELLE). Phase 4
Completed NCT05040048 - Taxonomy of Neurodegenerative Diseases : Observational Study in Alzheimer's Disease and Parkinson's Disease
Active, not recruiting NCT04006210 - Efficacy, Safety and Tolerability Study of ND0612 vs. Oral Immediate Release Levodopa/Carbidopa (IR-LD/CD) in Subjects With Parkinson's Disease Experiencing Motor Fluctuations Phase 3
Completed NCT02562768 - A Study of LY3154207 in Healthy Participants and Participants With Parkinson's Disease Phase 1
Completed NCT00105508 - Sarizotan HC1 in Patients With Parkinson's Disease Suffering From Treatment-associated Dyskinesia Phase 3
Completed NCT00105521 - Sarizotan in Participants With Parkinson's Disease Suffering From Treatment Associated Dyskinesia Phase 3
Recruiting NCT06002581 - Repetitive Transcranial Magnetic Stimulation(rTMS) Regulating Slow-wave to Delay the Progression of Parkinson's Disease N/A
Completed NCT02236260 - Evaluation of the Benefit Provided by Acupuncture During a Surgery of Deep Brain Stimulation N/A
Completed NCT00529724 - Body Weight Gain, Parkinson, Subthalamic Stimulation Phase 2
Active, not recruiting NCT05699460 - Pre-Gene Therapy Study in Parkinson's Disease and Multiple System Atrophy
Completed NCT03703570 - A Study of KW-6356 in Patients With Parkinson's Disease on Treatment With Levodopa-containing Preparations Phase 2
Completed NCT03462680 - GPR109A and Parkinson's Disease: Role of Niacin in Outcome Measures N/A
Completed NCT02837172 - Diagnosis of PD and PD Progression Using DWI
Not yet recruiting NCT04046276 - Intensity of Aerobic Training and Neuroprotection in Parkinson's Disease N/A
Recruiting NCT02952391 - Assessing Cholinergic Innervation in Parkinson's Disease Using the PET Imaging Marker [18F]Fluoroethoxybenzovesamicol N/A
Active, not recruiting NCT02937324 - The CloudUPDRS Smartphone Software in Parkinson's Study. N/A
Terminated NCT02924194 - Deep Brain Stimulation of the nbM to Treat Mild Cognitive Impairment in Parkinson's Disease N/A
Completed NCT02939391 - A Study of KW-6356 in Subjects With Early Parkinson's Disease Phase 2