Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT06013956
Other study ID # 23-358
Secondary ID
Status Recruiting
Phase Phase 4
First received
Last updated
Start date August 29, 2023
Est. completion date June 30, 2028

Study information

Verified date December 2023
Source The Cleveland Clinic
Contact David Escobar, PhD
Phone 216-390-1907
Email escobad2@ccf.org
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

A prospective cohort of patients scheduled to undergo deep brain stimulation (DBS) implantation surgery for the treatment of Parkinson's disease as per standard of care will be invited to participate in this study. This mechanistic study is aimed at better understanding the role of basal ganglia beta band (11-35 Hz) oscillations and resonance in the manifestation of Parkinson's disease (PD) motor signs using closed-loop electrical neurostimulation, levodopa medication, and computational modeling. The ultimate goal of this study is to inform the development of closed-loop neuromodulation technology that can be programmed and adjusted in real time based on patient-specific neural activity.


Description:

While much research has been dedicated to understanding the pathophysiology of Parkinson's disease (PD), the neural dynamics underlying the manifestation of motor signs remain unclear. Studies over the past two decades have shown a correlation of the amplitude and incidence of beta band oscillations in the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) with changes in bradykinesia and rigidity mediated by levodopa or deep brain stimulation (DBS) therapies. Yet, no study has conclusively or deductively demonstrated a causal link. A limitation to establishing causality is the lack of available neuromodulation tools capable of predictably and precisely controlling neural oscillatory activity in the human brain in real time without introducing confounding factors. Establishing these tools and clarifying whether the relationship of beta band oscillations with PD motor signs is causal or epiphenomenon are critical steps to better understand PD pathophysiology and advance personalized DBS technology in PD and other brain conditions. This study aims to address these technology and knowledge gaps by leveraging feedback control engineering and patient-specific computational modeling tools. In this study, the investigators will employ a neural control approach, referred to as evoked interference closed-loop DBS (eiDBS), to characterize the degree by which controlled suppression or amplification of beta oscillations in the STN and GPi influences bradykinesia and rigidity in PD (Specific Aim 1, SA1). The investigators will test the hypothesis that stimulation-induced suppression or amplification of beta oscillations in the STN or GPi will result in changes in bradykinesia and rigidity measures. In SA2, the investigators will employ levodopa medication to characterize how changes in bradykinesia and rigidity relate to variations in the amplitude of neural oscillations in the STN, GPi, and primary motor cortex (MC) evoked by STN and GPi stimulation. The investigators will test the hypothesis that levodopa administration will result in a decrease in the amplitude of stimulation-evoked beta oscillations that will correlate with changes in bradykinesia and rigidity. The results from SA2 will help to gain a greater understanding of intrinsic circuit dynamics associated with PD and identify strategies to optimize closed-loop DBS algorithms (e.g., eiDBS) in the face of concurrent levodopa therapy, a step to bring this technology to future clinical trials. Combining electrophysiological data with high-resolution (7T) magnetic resonance (MR) imaging and computational modeling, the investigators will examine which specific neuronal pathways connected with the STN and GPi need to be activated to evoke frequency-specific neural responses in the STN, GPi, and MC (SA3). The data from SA3 will shed light on which sub-circuits are involved in the generation of stimulation-evoked and spontaneous beta oscillations in PD, and inform how to use directional DBS leads to shape electric fields in the STN and GPi to selectively modulate the STN or GPi via eiDBS or other neurostimulation techniques. The investigators will address the three aims of this study with the participation of PD patients implanted with DBS leads in the STN or GPi, whose DBS lead extensions will be externalized and connected to our recording and closed-loop stimulation infrastructure.


Recruitment information / eligibility

Status Recruiting
Enrollment 30
Est. completion date June 30, 2028
Est. primary completion date June 30, 2028
Accepts healthy volunteers No
Gender All
Age group 40 Years to 80 Years
Eligibility Key Inclusion Criteria: - Ability to provide informed consent. - Clinical diagnosis of idiopathic Parkinson's disease. - Determined, as per standard of care, to be a candidate for deep brain stimulation (DBS) surgery targeting either the subthalamic nucleus or the internal segment of the globus pallidus. - Ability to tolerate delays in taking daily standard Parkinson's disease medications. Key Exclusion Criteria: - Secondary Parkinsonism, stroke, or progressive central nervous system disease other than Parkinson's disease.

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Neurostimulation
Electrical stimulation delivered via deep brain stimulation electrodes based on measurements of brain activity.
Drug:
Carbidopa 25/Levodopa 100Mg Tab
Anti-parkinsonian medication.

Locations

Country Name City State
United States Cleveland Clinic Cleveland Ohio

Sponsors (2)

Lead Sponsor Collaborator
David Escobar The Cleveland Clinic

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Effect of eiDBS suppression vs. off-stimulation on finger tapping speed The finger tapping speed will be measured with an inertial measuring unit. The relationship (slope/effect) between this kinematic variable (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. The LME models will include the stimulation conditions in this study (e.g., eiDBS-suppression) as fixed effects with the off-stimulation condition as a reference/control group, and random intercepts as random effects that account for the heterogeneity between subjects. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Primary Effect of eiDBS amplification vs. off-stimulation on finger tapping speed The relationship (slope/effect) between the kinematic variable (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Primary Effect of eiDBS suppression vs. off-stimulation on forearm speed The forearm speed will be measured with an inertial measuring unit. The relationship (slope/effect) between this kinematic variable (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Primary Effect of eiDBS amplification vs. off-stimulation on forearm speed The relationship (slope/effect) between the kinematic variable (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Primary Effect of eiDBS suppression vs. off-stimulation on UPDRS-III rigidity subscore The relationship (slope/effect) between this UPDRS-III rigidity subscore (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Primary Effect of eiDBS amplification vs. off-stimulation on UPDRS-III rigidity subscore The relationship (slope/effect) between this UPDRS-III rigidity subscore (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Primary Correlation between levodopa-related changes in finger tapping speed and the amplitude of stimulation-evoked beta oscillations The amplitude of beta oscillations evoked by stimulation will be characterized using the wavelet transform. The relationship (slope) between the kinematic measurements (response variable) and the beta oscillations amplitude (predictor variable) will be estimated via the linear mixed-effects models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Primary Correlation between levodopa-related changes in forearm speed and the amplitude of stimulation-evoked beta oscillations The relationship (slope) between the kinematic measurements (response variable) and the beta oscillations amplitude (predictor variable) will be estimated via the linear mixed-effects models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Primary Correlation between levodopa-related changes in UPDRS-III rigidity subscore and the amplitude of stimulation-evoked beta oscillations. The relationship (slope) between the UPDRS-III subscores (response variable) and the beta oscillations amplitude (predictor variable) will be estimated via the linear mixed-effects models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Secondary Effect of eiDBS suppression vs. off-stimulation on finger tapping displacement The finger tapping displacement will be derived based on data from an inertial measuring unit via a Kalman filter. The relationship (slope/effect) between this kinematic variable (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Secondary Effect of eiDBS amplification vs. off-stimulation on finger tapping displacement The relationship (slope/effect) between the kinematic variable (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Secondary Effect of eiDBS suppression vs. off-stimulation on forearm displacement The relationship (slope/effect) between the kinematic variable (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Secondary Effect of eiDBS amplification vs. off-stimulation on forearm displacement The relationship (slope/effect) between the kinematic variable (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Secondary Effect of eiDBS suppression vs. off-stimulation on UPDRS-III bradykinesia subscore The relationship (slope/effect) between this UPDRS-III subscore (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Secondary Effect of eiDBS amplification vs. off-stimulation on UPDRS-III bradykinesia subscore The relationship (slope/effect) between this UPDRS-III subscore (response variable) and the mean amplitude of beta (11-35 Hz) oscillations (predictor physiological variable) will be estimated via linear mixed-effects (LME) models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Secondary Correlation between levodopa-related changes in finger tapping displacement and the amplitude of stimulation-evoked beta oscillations The relationship (slope) between the kinematic measurements (response variable) and the beta oscillations amplitude (predictor variable) will be estimated via the linear mixed-effects models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Secondary Correlation between levodopa-related changes in forearm displacement and the amplitude of stimulation-evoked beta oscillations The relationship (slope) between the kinematic measurements (response variable) and the beta oscillations amplitude (predictor variable) will be estimated via the linear mixed-effects models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
Secondary Correlation between levodopa-related changes in UPDRS-III bradykinesia subscore and the amplitude of stimulation-evoked beta oscillations The relationship (slope) between the UPDRS-III subscores (response variable) and the beta oscillations amplitude (predictor variable) will be estimated via the linear mixed-effects models. Data will be collected in assessment blocks multiple times throughout enrollment. Assessments will be performed for up to nine days, starting the day after the DBS surgery. Assessments may also be performed in one visit 3-12 months after DBS surgery.
See also
  Status Clinical Trial Phase
Completed NCT05415774 - Combined Deep Brain Stimulation in Parkinson's Disease N/A
Recruiting NCT04691661 - Safety, Tolerability, Pharmacokinetics and Efficacy Study of Radotinib in Parkinson's Disease Phase 2
Active, not recruiting NCT05754086 - A Multidimensional Study on Articulation Deficits in Parkinsons Disease
Completed NCT04045925 - Feasibility Study of the Taïso Practice in Parkinson's Disease N/A
Recruiting NCT04194762 - PARK-FIT. Treadmill vs Cycling in Parkinson´s Disease. Definition of the Most Effective Model in Gait Reeducation N/A
Completed NCT02705755 - TD-9855 Phase 2 in Neurogenic Orthostatic Hypotension (nOH) Phase 2
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT05830253 - Free-living Monitoring of Parkinson's Disease Using Smart Objects
Recruiting NCT03272230 - Assessment of Apathy in a Real-life Situation, With a Video and Sensors-based System N/A
Recruiting NCT06139965 - Validity and Reliability of the Turkish Version of the Comprehensive Coordination Scale in Parkinson's Patients
Completed NCT04580849 - Telerehabilitation Using a Dance Intervention in People With Parkinson's Disease N/A
Completed NCT03980418 - Evaluation of a Semiconductor Camera for the DaTSCAN™ Exam N/A
Completed NCT04477161 - Effect of Ketone Esters in Parkinson's Disease N/A
Completed NCT04942392 - Digital Dance for People With Parkinson's Disease During the COVID-19 Pandemic N/A
Terminated NCT03446833 - LFP Beta aDBS Feasibility Study N/A
Completed NCT03497884 - Individualized Precise Localization of rTMS on Primary Motor Area N/A
Completed NCT05538455 - Investigating ProCare4Life Impact on Quality of Life of Elderly Subjects With Neurodegenerative Diseases N/A
Recruiting NCT04997642 - Parkinson's Disease and Movement Disorders Clinical Database
Completed NCT04117737 - A Pilot Study of Virtual Reality and Antigravity Treadmill for Gait Improvement in Parkinson N/A
Recruiting NCT03618901 - Rock Steady Boxing vs. Sensory Attention Focused Exercise N/A