Parkinson Disease Clinical Trial
Official title:
Effects of Training Involving Rhythmic Auditory Stimulation on Upper-limb Movements in Patients With Parkinson's Disease
The goal of this clinical trial is to examine effects of training involving rhythmic auditory stimulation (RAS) on upper-limb movements and functions in patients with Parkinson's disease (PD). Patients will be randomly divided into two groups: the RAS group and the no-RAS group. Patients will receive training with or without the aid of RAS based on their groups. The training task is to use the right hand to take beads from one bowl to another bowl. The box and block test and the Jebsen hand function test will be used before and after training (i.e., pretest and posttest respectively) to assess patients' upper-limb speed and function. Researchers will compare scores of the box and block test and the Jebsen hand function test between the two groups at pretest and posttest to determine effects of RAS.
Status | Not yet recruiting |
Enrollment | 138 |
Est. completion date | December 31, 2025 |
Est. primary completion date | December 31, 2025 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - idiopathic PD diagnosed by a neurologist based on the Movement Disorders Society clinical diagnostic criteria; - the Hoehn and Yahr stage is 2 or 3, meaning that bilateral movement problems or combination with mild postural instability; - a score of Montreal Cognitive Assessment is equal to or higher than 21 to ensure that they understand experimental instructions; - a score of Edinburgh Handedness Inventory is above 60 to ensure that they are right-handed; - types and doses of medications remain unchanged in the past month right before participation. Exclusion Criteria: - the presence of medical conditions or diseases that may affect hand movements, vision, or hearing based on self-report. |
Country | Name | City | State |
---|---|---|---|
n/a |
Lead Sponsor | Collaborator |
---|---|
The Hong Kong Polytechnic University |
Bengtsson SL, Ullen F, Ehrsson HH, Hashimoto T, Kito T, Naito E, Forssberg H, Sadato N. Listening to rhythms activates motor and premotor cortices. Cortex. 2009 Jan;45(1):62-71. doi: 10.1016/j.cortex.2008.07.002. Epub 2008 Oct 30. — View Citation
Braunlich K, Seger CA, Jentink KG, Buard I, Kluger BM, Thaut MH. Rhythmic auditory cues shape neural network recruitment in Parkinson's disease during repetitive motor behavior. Eur J Neurosci. 2019 Mar;49(6):849-858. doi: 10.1111/ejn.14227. Epub 2018 Dec 3. — View Citation
Buard I, Dewispelaere WB, Thaut M, Kluger BM. Preliminary Neurophysiological Evidence of Altered Cortical Activity and Connectivity With Neurologic Music Therapy in Parkinson's Disease. Front Neurosci. 2019 Feb 19;13:105. doi: 10.3389/fnins.2019.00105. eCollection 2019. — View Citation
Cahn DA, Sullivan EV, Shear PK, Pfefferbaum A, Heit G, Silverberg G. Differential contributions of cognitive and motor component processes to physical and instrumental activities of daily living in Parkinson's disease. Arch Clin Neuropsychol. 1998 Oct;13(7):575-83. — View Citation
Chen JL, Penhune VB, Zatorre RJ. Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex. 2008 Dec;18(12):2844-54. doi: 10.1093/cercor/bhn042. Epub 2008 Apr 3. — View Citation
Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, Melzer TR, Kirwan J, Keenan R, Wells S, Porter RJ, Watts R, Anderson TJ. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010 Nov 9;75(19):1717-25. doi: 10.1212/WNL.0b013e3181fc29c9. — View Citation
Desrosiers J, Bravo G, Hebert R, Dutil E, Mercier L. Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil. 1994 Jul;75(7):751-5. — View Citation
Dong VA, Fong KN, Chen YF, Tseng SS, Wong LM. 'Remind-to-move' treatment versus constraint-induced movement therapy for children with hemiplegic cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2017 Feb;59(2):160-167. doi: 10.1111/dmcn.13216. Epub 2016 Aug 9. — View Citation
Fan W, Li J, Wei W, Xiao SH, Liao ZJ, Wang SM, Fong KNK. Effects of rhythmic auditory stimulation on upper-limb movements in patients with Parkinson's disease. Parkinsonism Relat Disord. 2022 Aug;101:27-30. doi: 10.1016/j.parkreldis.2022.06.020. Epub 2022 Jun 23. — View Citation
Gale JT, Amirnovin R, Williams ZM, Flaherty AW, Eskandar EN. From symphony to cacophony: pathophysiology of the human basal ganglia in Parkinson disease. Neurosci Biobehav Rev. 2008;32(3):378-87. doi: 10.1016/j.neubiorev.2006.11.005. Epub 2007 Apr 26. — View Citation
Ghai S, Ghai I, Schmitz G, Effenberg AO. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Sci Rep. 2018 Jan 11;8(1):506. doi: 10.1038/s41598-017-16232-5. — View Citation
Grahn JA, Rowe JB. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J Neurosci. 2009 Jun 10;29(23):7540-8. doi: 10.1523/JNEUROSCI.2018-08.2009. — View Citation
Jastrzebowska MA, Marquis R, Melie-Garcia L, Lutti A, Kherif F, Herzog MH, Draganski B. Dopaminergic modulation of motor network compensatory mechanisms in Parkinson's disease. Hum Brain Mapp. 2019 Oct 15;40(15):4397-4416. doi: 10.1002/hbm.24710. Epub 2019 Jul 10. — View Citation
Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969 Jun;50(6):311-9. No abstract available. — View Citation
Koshimori Y, Thaut MH. Future perspectives on neural mechanisms underlying rhythm and music based neurorehabilitation in Parkinson's disease. Ageing Res Rev. 2018 Nov;47:133-139. doi: 10.1016/j.arr.2018.07.001. Epub 2018 Jul 10. — View Citation
Kraft E, Loichinger W, Diepers M, Lule D, Schwarz J, Ludolph AC, Storch A. Levodopa-induced striatal activation in Parkinson's disease: a functional MRI study. Parkinsonism Relat Disord. 2009 Sep;15(8):558-63. doi: 10.1016/j.parkreldis.2009.02.005. Epub 2009 May 20. — View Citation
Leuk JSP, Low LLN, Teo WP. An Overview of Acoustic-Based Interventions to Improve Motor Symptoms in Parkinson's Disease. Front Aging Neurosci. 2020 Aug 14;12:243. doi: 10.3389/fnagi.2020.00243. eCollection 2020. — View Citation
Mak MK, Lau ET, Tam VW, Woo CW, Yuen SK. Use of Jebsen Taylor Hand Function Test in evaluating the hand dexterity in people with Parkinson's disease. J Hand Ther. 2015 Oct-Dec;28(4):389-94; quiz 395. doi: 10.1016/j.jht.2015.05.002. Epub 2015 May 18. — View Citation
Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985 Jun;39(6):386-91. doi: 10.5014/ajot.39.6.386. — View Citation
Muslimovic D, Post B, Speelman JD, Schmand B, de Haan RJ; CARPA Study Group. Determinants of disability and quality of life in mild to moderate Parkinson disease. Neurology. 2008 Jun 3;70(23):2241-7. doi: 10.1212/01.wnl.0000313835.33830.80. — View Citation
Ni M, Hazzard JB, Signorile JF, Luca C. Exercise Guidelines for Gait Function in Parkinson's Disease: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair. 2018 Oct;32(10):872-886. doi: 10.1177/1545968318801558. Epub 2018 Sep 28. — View Citation
Nombela C, Hughes LE, Owen AM, Grahn JA. Into the groove: can rhythm influence Parkinson's disease? Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2564-70. doi: 10.1016/j.neubiorev.2013.08.003. Epub 2013 Sep 3. — View Citation
Nonnekes J, Timmer MH, de Vries NM, Rascol O, Helmich RC, Bloem BR. Unmasking levodopa resistance in Parkinson's disease. Mov Disord. 2016 Nov;31(11):1602-1609. doi: 10.1002/mds.26712. Epub 2016 Jul 19. — View Citation
Radhakrishnan DM, Goyal V. Parkinson's disease: A review. Neurol India. 2018 Mar-Apr;66(Supplement):S26-S35. doi: 10.4103/0028-3886.226451. — View Citation
Rajiah K, Maharajan MK, Yeen SJ, Lew S. Quality of Life and Caregivers' Burden of Parkinson's Disease. Neuroepidemiology. 2017;48(3-4):131-137. doi: 10.1159/000479031. Epub 2017 Jul 21. — View Citation
Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci. 2010 Nov;11(11):760-72. doi: 10.1038/nrn2915. Epub 2010 Oct 14. — View Citation
Schaffert N, Janzen TB, Mattes K, Thaut MH. A Review on the Relationship Between Sound and Movement in Sports and Rehabilitation. Front Psychol. 2019 Feb 12;10:244. doi: 10.3389/fpsyg.2019.00244. eCollection 2019. — View Citation
Sian J, Gerlach M, Youdim MB, Riederer P. Parkinson's disease: a major hypokinetic basal ganglia disorder. J Neural Transm (Vienna). 1999;106(5-6):443-76. doi: 10.1007/s007020050171. — View Citation
Thaut MH, McIntosh GC, Hoemberg V. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Front Psychol. 2015 Feb 18;5:1185. doi: 10.3389/fpsyg.2014.01185. eCollection 2014. — View Citation
Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault JM. Rhythmic auditory stimulation in gait training for Parkinson's disease patients. Mov Disord. 1996 Mar;11(2):193-200. doi: 10.1002/mds.870110213. — View Citation
Vitorio R, Stuart S, Gobbi LTB, Rochester L, Alcock L, Pantall A. Reduced Gait Variability and Enhanced Brain Activity in Older Adults With Auditory Cues: A Functional Near-Infrared Spectroscopy Study. Neurorehabil Neural Repair. 2018 Nov;32(11):976-987. doi: 10.1177/1545968318805159. — View Citation
Vorovenci RJ, Biundo R, Antonini A. Therapy-resistant symptoms in Parkinson's disease. J Neural Transm (Vienna). 2016 Jan;123(1):19-30. doi: 10.1007/s00702-015-1463-8. Epub 2015 Sep 26. — View Citation
Yang N, Waddington G, Adams R, Han J. Translation, cultural adaption, and test-retest reliability of Chinese versions of the Edinburgh Handedness Inventory and Waterloo Footedness Questionnaire. Laterality. 2018 May;23(3):255-273. doi: 10.1080/1357650X.2017.1357728. Epub 2017 Jul 31. — View Citation
* Note: There are 33 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | The box and block test (BBT) | BBT is used to measure manual dexterity as well as upper-limb movement speed. It is a 53.7* 25.4 cm box separated into two compartments by a 15.2 cm high erected partition, with 150 blocks in each compartment. Starting from the dominant hand, patients will be asked to move the blocks one by one from the compartment on the hand side to the opposite side (e.g., move the blocks from the right compartment to the left compartment for the right hand test). Patients should move the blocks with their arms raised and crossed over the partition. They have one minute to move the blocks as fast as possible. The score of BBT for each hand is the quantity of blocks transferred between compartments in one minute. A higher score indicates faster upper-limb movements and better dexterity. For the elderly, the BBT has high test-retest reliability (intraclass correlation coefficient of 0.89 to 0.97) and construct validity. | One week before the training. BBT requires 2 to 5 minutes to administer. | |
Primary | The box and block test (BBT) | BBT is used to measure manual dexterity as well as upper-limb movement speed. It is a 53.7* 25.4 cm box separated into two compartments by a 15.2 cm high erected partition, with 150 blocks in each compartment. Starting from the dominant hand, patients will be asked to move the blocks one by one from the compartment on the hand side to the opposite side (e.g., move the blocks from the right compartment to the left compartment for the right hand test). Patients should move the blocks with their arms raised and crossed over the partition. They have one minute to move the blocks as fast as possible. The score of BBT for each hand is the quantity of blocks transferred between compartments in one minute. A higher score indicates faster upper-limb movements and better dexterity. For the elderly, the BBT has high test-retest reliability (intraclass correlation coefficient of 0.89 to 0.97) and construct validity. | One week after the training. BBT requires 2 to 5 minutes to administer. | |
Primary | The Jebsen hand function test (JHFT) | JHFT is used to assess unimanual hand function when examinees perform daily activities. Seven items are included in JHFT: writing, turning cards, picking up small objects, simulated feeding, stacking checkers, moving large light objects, and moving large heavy objects. Considering that the patients are Chinese speakers, it is not appropriate to do English writing. According to a previous study conducted in Chinese cultures, the JHFT could be modified through excluding the writing item to avoid cultural influences on scores. The score for each item is the completion time. The less time a patient takes, the better hand function s/he has. The JHFT has excellent test-retest reliability (intraclass correlation coefficients of 0.89 to 0.97) for PD patients. | One week before the training. JHFT takes approximately 15 minutes to administer. | |
Primary | The Jebsen hand function test (JHFT) | JHFT is used to assess unimanual hand function when examinees perform daily activities. Seven items are included in JHFT: writing, turning cards, picking up small objects, simulated feeding, stacking checkers, moving large light objects, and moving large heavy objects. Considering that the patients are Chinese speakers, it is not appropriate to do English writing. According to a previous study conducted in Chinese cultures, the JHFT could be modified through excluding the writing item to avoid cultural influences on scores. The score for each item is the completion time. The less time a patient takes, the better hand function s/he has. The JHFT has excellent test-retest reliability (intraclass correlation coefficients of 0.89 to 0.97) for PD patients. | One week after the training. JHFT takes approximately 15 minutes to administer. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05415774 -
Combined Deep Brain Stimulation in Parkinson's Disease
|
N/A | |
Recruiting |
NCT04691661 -
Safety, Tolerability, Pharmacokinetics and Efficacy Study of Radotinib in Parkinson's Disease
|
Phase 2 | |
Active, not recruiting |
NCT05754086 -
A Multidimensional Study on Articulation Deficits in Parkinsons Disease
|
||
Completed |
NCT04045925 -
Feasibility Study of the Taïso Practice in Parkinson's Disease
|
N/A | |
Recruiting |
NCT04194762 -
PARK-FIT. Treadmill vs Cycling in Parkinson´s Disease. Definition of the Most Effective Model in Gait Reeducation
|
N/A | |
Completed |
NCT02705755 -
TD-9855 Phase 2 in Neurogenic Orthostatic Hypotension (nOH)
|
Phase 2 | |
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Recruiting |
NCT05830253 -
Free-living Monitoring of Parkinson's Disease Using Smart Objects
|
||
Recruiting |
NCT03272230 -
Assessment of Apathy in a Real-life Situation, With a Video and Sensors-based System
|
N/A | |
Recruiting |
NCT06139965 -
Validity and Reliability of the Turkish Version of the Comprehensive Coordination Scale in Parkinson's Patients
|
||
Completed |
NCT04580849 -
Telerehabilitation Using a Dance Intervention in People With Parkinson's Disease
|
N/A | |
Completed |
NCT04477161 -
Effect of Ketone Esters in Parkinson's Disease
|
N/A | |
Completed |
NCT03980418 -
Evaluation of a Semiconductor Camera for the DaTSCAN™ Exam
|
N/A | |
Completed |
NCT04942392 -
Digital Dance for People With Parkinson's Disease During the COVID-19 Pandemic
|
N/A | |
Terminated |
NCT03446833 -
LFP Beta aDBS Feasibility Study
|
N/A | |
Completed |
NCT03497884 -
Individualized Precise Localization of rTMS on Primary Motor Area
|
N/A | |
Completed |
NCT05538455 -
Investigating ProCare4Life Impact on Quality of Life of Elderly Subjects With Neurodegenerative Diseases
|
N/A | |
Recruiting |
NCT04997642 -
Parkinson's Disease and Movement Disorders Clinical Database
|
||
Completed |
NCT04117737 -
A Pilot Study of Virtual Reality and Antigravity Treadmill for Gait Improvement in Parkinson
|
N/A | |
Recruiting |
NCT03618901 -
Rock Steady Boxing vs. Sensory Attention Focused Exercise
|
N/A |