Chronic Rhinosinusitis With Nasal Polyps Clinical Trial
Official title:
Evaluation of Mepolizumab Effectiveness in Patients With Chronic Rhinosinusitis With Nasal Polyps and Comorbid Severe Eosinophilic Asthma: an Integrative Multi-omics Approach to Assess Biomarker Signatures of Responsive Disease Endotypes
The goal of this observational study is to learn about clinical and functional outcomes in patients with Chronic rhinosinusitis with nasal polyps and comorbid Severe Eosinophilic Asthma and patients with Chronic rhinosinusitis with nasal polyps only treated with mepolizumab compared to healthy controls. Participants will be asked to give nasal, blood and sputum samples before mepolizumab administration (T0) and at 3 (T3), 6 (T6) and 12 (T12) months after mepolizumab initiation The main aims are to identify airways microbiota modifications and differential gene expression after mepolizumab initiation. Researchers will compare: - Patients with Chronic rhinosinusitis with nasal polyps and comorbid Severe Eosinophilic Asthma - Patients with Chronic rhinosinusitis with nasal polyps only - Healthy subjects The research will address the following questions: 1. What are the prospective clinical and functional outcomes of mepolizumab treatment 2. What is the impact of mepolizumab therapy on the airways microbiota and how this may relate to a potentially reduced need for steroids 3. What are the host differential gene expression patterns and the immune/inflammatory (cytokines/chemokines) profile alterations in airways microenvironment and in systemic circulation in response to therapy 4. What are the associations between host and microbiome variables for building up diagnostic and predictive biomarker classifiers of responsive disease endotypes
Chronic rhinosinusitis (CRS) has been divided into two subtypes: CRS with (CRSwNP) and without nasal polyps (CRSsNP), which not only differ in terms of presence of polyps, but also appear to have distinct pathogenesis and clinical presentations. It is known that CRSwNP patients have a greater disease burden compared with those suffering from CRSsNP with respect to disease severity and poor treatment. More specifically, approximately 85% of CRSwNP patients are characterized by severe symptoms, recurrent disease and a dominant Th2 endotype associated with a marked infiltration of eosinophils and mast cells, goblet hyperplasia and increased levels of Th2 inflammatory cytokines including Interleukin IL-4, IL-5, and IL-13. An additional hallmark of CRSwNP is the loss of healthy barrier function in sinonasal epithelial cells, increased permeability, decreased epithelial resistance, and a high degree of tissue remodeling compared with cells from CRSsNP patients and control individuals. This loss of barrier function is reflective of a general inflammatory process, though it is unclear if the epithelial cells are inherently abnormal or if the state is induced. Treatment for CRS is most frequently glucocorticoid-based, but response is quite variable in patients with nasal polyps and side-effects from oral steroids limit their long-term efficacy. An inverse relationship between glucocorticoid receptor β expression in nasal polyp tissue and steroid efficacy has been observed. Furthermore, neutrophil accumulation in nasal polyp tissue has been related to corticosteroid insensitivity. Some individuals exhibit a very high level of resistance to steroid therapy thus underscoring the need for therapeutics targeting non-steroid-responsive pathophysiologic mechanisms involved in sinus polyp formation. Asthma is frequently a comorbid condition sharing similar pathophysiology in CRSwNP patients, which affects 20-60% of diseased individuals. Yet, specific subsets of patients such as those with IL-5-enriched nasal polyps are characterized by a greater percentage of asthma and revision surgery. Clinically, CRSwNP with comorbid asthma (CRSwNP + AS) is associated with even more severe sinonasal symptoms and worse quality of life, and it is more difficult to treat both medically and surgically. Correspondingly, asthma in the presence of nasal polyposis is harder to control, being more exacerbation prone, with increased airway obstruction and more extensive eosinophilic inflammation. Although a clear correlation apparently exists between sinonasal and lower airway inflammation in patients with CRSwNP+AS, the definitive underlying mechanism(s) remains poorly elucidated. The airways microbiota, i.e. the niche-specific communities of microbes including bacteria, fungi, archaea and viruses that inhabit the respiratory tract, has been proved to play a critical role in airway health and immune cells homeostasis -including eosinophils regulation- through its constant interaction with the mucosal immune system. Alterations in the composition and diversity of microbiome across the respiratory tract may contribute to the observed inflammatory crosstalk in CRSwNP + AS, and perhaps influence patients' response to treatment. Nasal and lower airway microbiota dysbiosis have been proved to be implicated in the persistence of characteristic inflammatory endotypes in both CRSwNP and asthma. It has been shown that bacterial dysbiosis is correlated with CRS status and that specific microbiota taxonomic classifications are correlated with patient phenotypes, including the presence of nasal polyps. A high proportion of patients with CRSwNP are colonized with Staphylococcus (S.) aureus and IgE antibodies to S. aureus enterotoxins are frequently found in diseased tissue specimens. Both S. aureus and Pseudomonas aeruginosa bacteria can disrupt the epithelial barrier contributing to presumed physiologic mechanisms for CRSwNP development. It has been previously demonstrated that S. aureus is able to drive Th2 type inflammation in CRSwNPand that the expression of IL-5 and of IgE against S. aureus superantigens (SE-IgE) within polyp tissue is associated with comorbid asthma and CRSwNP recurrence. Furthermore, antimicrobial compounds including lysozyme, S100 proteins, and β-defensins all are decreased in CRSwNP patients compared to matched controls. This reduction in natural defenses could play a key role in shifting the balance towards dysbiosis. Furthermore, in addition to bacterial microbiome which has been the focus of most recent studies, the contribution of fungal microbiota to allergic airway diseases has been recently emerged. An alternative proposed pathogenic mechanism for Th2-biased CRS is that T-cells are allergically sensitized to fungi in the ambient environment, leading to allergic inflammation characterized by a Th2-high state. Overall, a distinct microbiome role in CRSwNP and asthma pathogenesis is actually recognized. However, the significance of interactions between the lower/upper airways flora and the host local and systemic inflammatory response has not yet been well defined neither such a knowledge is exploited for a more accurate patients classification and selection of best possible therapeutic manipulation to change disease progression. Evidently, an optimal diagnostic approach for CRSwNP + AS would include use of very specific biomarkers ensuring a detailed endotyping, whereas, there is a growing consensus that both diseases should be treated to improve therapeutic outcome. However, the management of CRSwNP + AS patients who remain uncontrolled despite medical and often surgical intervention poses a great challenge to clinicians. Fortunately, there has been significant innovation and expansion in the treatment armamentarium since the advent of biological therapies. Targeted biologics (monoclonal antibodies against IL-4, IL-5, IL-13 and IgE) for treating asthma are now being used for CRSwNP with encouraging results. Recently, mepolizumab (Nucala; GlaxoSmithKline), an anti-IL5 humanized mab known to efficiently down-regulate the eosinophilic inflammatory pathway and to exhibit clinical benefit in patients with severe, eosinophilic asthma, has completed a phase 3 trial (SYNAPSE; NCT03085797) including 413 subjects with CRSwNP. Early results showed treatment with mepolizumab had a significant difference in median nasal polyp score compared to baseline (-0.73; 95% CI: -1.11 to -0.34) and nasal obstruction visual analog score compared to baseline (-3.14; 95% CI: -4.09 to -2.18; unpublished data). However, there are only limited longitudinal studies evaluating this biologic's efficacy in CRSwNP+AS patients, while the assessment of action mode and biomarkers predicting responsiveness, remain to be elucidated. Despite the persuasive rationale for systemic targeting of shared pathways in CRSwNP+AS with novel biologics, in clinical practice the nose and lungs are often treated as separate entities and these therapeutics are considered rather challenging for the clinicians due to their high cost and necessity for careful selection of patients and right treatment. Furthermore therapeutic decision-making is still based on a rather trial-and-error approach, resulting in treatment failures or relapses. There is clearly a need for a personalized medicine approach that would allow for a more accurate prediction of the appropriate choice of the drug at the initial assessment, and ideally would communicate chances of long-term success to an individual patient. The principal goal of this three arms RWE study (CRSwNP+AS, CRSwNP-AS, healthy controls) study is to develop signatures of host-microbiome biomarkers of both diagnostic and predicting value in order to provide a rational guideline for mepolizumab selection in precision treatment of patients with CRSwNP+AS. In this frame, mepolizumab therapeutic potential will be assessed in relation to the rather heterogeneous presentations of Th2 inflammation and airways microbiome structure. The protocol will take on the question of microbiome dysbiosis involvement in immune activation and dysfunction contributing to CRSwNP + AS diversity and delving into the complex patterns of host-microbiota molecular interactions in the upper and lower airways that may shape patients' clinical predisposition to mepolizumab therapy. To address the study objectives a longitudinal design is proposed combining clinical assessments with high-throughput multi-omics analyses of patients' samples and advanced bioinformatics for data integration. The starting point of the project will be the consent recruitment of healthy controls, CRSwNP + AS and CRSwNP - AS participants. Collection of biological samples from patients and clinical assessment/measurements of cell counts will take place at baseline, i.e. the day of treatment initiation before mepolizumab administration (T0) and at 3 (T3), 6 (T6) and 12 (T12) months after mepolizumab initiation. Samples from healthy participants will be collected only at baseline (T0) and analyzed in parallel with the corresponding samples from CRSwNP patients. DNA and RNA will be isolated from induced sputum and nasal samples collected at T0 and T3 for subsequent 16S rRNA gene amplicon sequencing, DNA shot-gun sequencing (applied only in selected number of patients and healthy controls) and bulk RNA sequencing (RNAseq), to identify airways microbiota modifications and differential gene expression, respectively. Peripheral blood mononuclear cells (PBMC) from a representative number of patients and healthy controls will be also analyzed at the same time points by single-cell RNA sequencing (scRNAseq). In parallel, the dynamic pattern of cytokines/chemokines in serum/airways samples will be determined by xMAP immunoassays at T0 and T3. Subsequently, multiple comparisons at the level of microbiome and host parameters will be undertaken mainly through two paths. First, between patients and healthy controls at T0 to assess differences of disease versus "normal" condition; Second, pairwise in each patient at T0 and at time intervals, mostly at T3, after treatment intervention, to capture potential alterations in response to mepolizumab. Next, a thorough integrative analysis engaging clinical data and multi-omics data (from microbiome, bulk RNAseq, scRNAseq as well as cytokinome/chemokinome analyses) will be undertaken to investigate possible microbiome-host interactions. Finally, this integrative analysis will be exploited to gain a global view of hub genes, inflammatory mediators and microbial taxa involved in key interactions and to build biomarker signatures that might serve as indicators of specific disease subtypes and/or predictors of mepolizumab treatment outcome. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05895929 -
The Role of IL5 in Epithelial Cell Integrity
|
Early Phase 1 | |
Active, not recruiting |
NCT05891483 -
Efficacy and Safety of SHR-1905 Injection in Patients With Chronic Rhinosinusitis With Nasal Polyps
|
Phase 2 | |
Active, not recruiting |
NCT04998604 -
EValuating trEatment RESponses of Dupilumab Versus Omalizumab in Type 2 Patients
|
Phase 4 | |
Recruiting |
NCT05009758 -
Moving Towards Precision Medicine in United Airways Disease: Unraveling Inflammatory Patterns in Asthmatic Patients With or Without Nasal Polyps
|
N/A | |
Active, not recruiting |
NCT05529784 -
Dupilumab in the Treatment of Severe Uncontrolled CRSwNP: a Multicentre Observational Real-life Study (DUPIREAL)
|
||
Recruiting |
NCT05902325 -
Identifying Predictors Of Response To Mepolizumab In CRSwNP
|
Phase 4 | |
Completed |
NCT05049122 -
Dupilumab in Japanese Patients With Chronic Rhinosinusitis With Nasal Polyp (SINUS-M52)
|
Phase 4 | |
Not yet recruiting |
NCT05598411 -
CST1-Guided Oral Glucocorticoids Management for CRSwNP
|
Phase 4 | |
Active, not recruiting |
NCT05553951 -
Adherence in Global Airways
|
N/A | |
Recruiting |
NCT05131464 -
The Study of CM310 in Patients With Chronic Rhinosinusitis With Nasal Polyps
|
Phase 2 | |
Recruiting |
NCT05598424 -
CST1 Predictive Model of Oral Glucocorticoid Therapy Sensitivity for Chronic Rhinosinusitis With Polyps
|
Phase 4 | |
Active, not recruiting |
NCT05649813 -
A Study in Male and Female Adult Participants With Chronic Rhinosinusitis With Nasal Polyps In the Greater Gulf Region
|
||
Recruiting |
NCT04628442 -
Tissue Immune Interaction in Nasal Polyposis
|
||
Active, not recruiting |
NCT06118554 -
3D Printing to Improve Nasal Irrigation Outcome
|
N/A | |
Active, not recruiting |
NCT04596189 -
Dupilumab for Prevention of Recurrence of CRSwNP After ESS
|
Phase 4 | |
Recruiting |
NCT02668861 -
Effect of Oral Vitamin D3 on Chronic Rhinosinusitis Treatment in Adults With Lower Vitamin D Levels
|
Phase 3 | |
Active, not recruiting |
NCT05878093 -
Dupilumab in Chinese Adult Participants With CRSwNP
|
Phase 3 | |
Completed |
NCT05931744 -
The Role of Budesonide Intrapolyp Injection in the Management of Type 2 Chronic Rhinosinusitis
|
Phase 2/Phase 3 | |
Recruiting |
NCT05938972 -
Real Life Study of Biologicals in Patients With Severe CRSwNP
|
||
Not yet recruiting |
NCT05157412 -
Role of Doxycycline in Chronic Rhinosinusitis With Nasal Polyps
|
Phase 3 |