Acute Respiratory Distress Syndrome Clinical Trial
Official title:
Relation Between Mechanical Power and Ventilatory Ratio in Patients With Acute Respiratory Distress Syndrome
Verified date | March 2023 |
Source | Ramos Mejía Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Observational |
Mechanical power (MP) and ventilatory ratio (VR) are variables associated with outcomes in patients with acute respiratory distress syndrome (ARDS). In respiratory setting, the optimization of MP should lead to an increase in VR. Therefore, the objectives of this study are: to assess the relationship between MP and VR and to compare the components of MP (ventilatory variables) according to a level of MP (17 J/minute) considered harmful.
Status | Completed |
Enrollment | 39 |
Est. completion date | February 10, 2023 |
Est. primary completion date | February 10, 2023 |
Accepts healthy volunteers | |
Gender | All |
Age group | 15 Years and older |
Eligibility | Inclusion Criteria: - patients who have been receiving mechanical ventilation (MV) and have been defined as with ARDS according to the Berlin definition Exclusion Criteria: - patients with chronic pulmonary disease - patients with an expected duration of MV shorter than 48 h - patients with a high risk of death within 3 months for reasons other than ARDS - patients having made the decision to withhold life-sustaining treatment. |
Country | Name | City | State |
---|---|---|---|
Argentina | Hospital Regional Rio Gallegos | Rio Gallegos | Santa Cruz |
Lead Sponsor | Collaborator |
---|---|
Ramos Mejía Hospital |
Argentina,
Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, Cammaroto A, Brioni M, Montaruli C, Nikolla K, Guanziroli M, Dondossola D, Gatti S, Valerio V, Vergani GL, Pugni P, Cadringher P, Gagliano N, Gattinoni L. Mechanical Power and Development of — View Citation
Maj R, Palermo P, Gattarello S, Brusatori S, D'Albo R, Zinnato C, Velati M, Romitti F, Busana M, Wieditz J, Herrmann P, Moerer O, Quintel M, Meissner K, Sanderson B, Chiumello D, Marini JJ, Camporota L, Gattinoni L. Ventilatory ratio, dead space, and venous admixture in patients with acute respiratory distress syndrome. Br J Anaesth. 2023 Mar;130(3):360-367. doi: 10.1016/j.bja.2022.10.035. Epub 2022 Dec 2. — View Citation
Marini JJ, Jaber S. Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Med. 2016 Oct;42(10):1597-1600. doi: 10.1007/s00134-016-4534-x. Epub 2016 Sep 16. No abstract available. — View Citation
Marini JJ. How I optimize power to avoid VILI. Crit Care. 2019 Oct 21;23(1):326. doi: 10.1186/s13054-019-2638-8. No abstract available. — View Citation
Serpa Neto A, Deliberato RO, Johnson AEW, Bos LD, Amorim P, Pereira SM, Cazati DC, Cordioli RL, Correa TD, Pollard TJ, Schettino GPP, Timenetsky KT, Celi LA, Pelosi P, Gama de Abreu M, Schultz MJ; PROVE Network Investigators. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018 Nov;44(11):1914-1922. doi: 10.1007/s00134-018-5375-6. Epub 2018 Oct 5. — View Citation
Sinha P, Calfee CS, Beitler JR, Soni N, Ho K, Matthay MA, Kallet RH. Physiologic Analysis and Clinical Performance of the Ventilatory Ratio in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2019 Feb 1;199(3):333-341. doi: 10.1164/rccm.201804-0692OC. — View Citation
Sinha P, Fauvel NJ, Singh S, Soni N. Ventilatory ratio: a simple bedside measure of ventilation. Br J Anaesth. 2009 May;102(5):692-7. doi: 10.1093/bja/aep054. Epub 2009 Apr 3. — View Citation
Urner M, Juni P, Hansen B, Wettstein MS, Ferguson ND, Fan E. Time-varying intensity of mechanical ventilation and mortality in patients with acute respiratory failure: a registry-based, prospective cohort study. Lancet Respir Med. 2020 Sep;8(9):905-913. doi: 10.1016/S2213-2600(20)30325-8. Epub 2020 Jul 28. — View Citation
Zhang Z, Zheng B, Liu N, Ge H, Hong Y. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med. 2019 Jun;45(6):856-864. doi: 10.1007/s00134-019-05627-9. Epub 2019 May 6. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | To determine the correlation between mechanical power (MP) and ventilatory rate (VR) | The relationship (correlation) between MP and VR will be assessed, according to the value of both variables on day 3 of mechanical ventilation. | First day of mechanical ventilation | |
Secondary | To determine the correlation between mechanical power (MP) and static compliance (SC) with ventilatory rate (VR). (MP/SC)/VR | The relationship (correlation) between mechanical power (MP) and static compliance (SC) with ventilatory rate (VR) will be assessed, according to the value of both variables on day 3 of mechanical ventilation. | First day of mechanical ventilation | |
Secondary | Assess the behavior of the variables according to the MP value (> or < 17 j/min) | The variables will be compared according to the MP value (< or >= 17 J/min) | 3rd day of mechanical ventilation | |
Secondary | Assess the hydric balance according to the MP value (> or < 17 j/min) | The hydric balance will be compared according to the MP value (< or >= 17 J/min) | 3rd day of mechanical ventilation | |
Secondary | Assess the behavior of the variables according to the MP/SC value (> or < 0.47 j/min) | The variables will be compared according to the MP/SC value (< or >= 0.47 J/min) | 3rd day of mechanical ventilation |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04384445 -
Zofin (Organicell Flow) for Patients With COVID-19
|
Phase 1/Phase 2 | |
Recruiting |
NCT05535543 -
Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04695392 -
Restore Resilience in Critically Ill Children
|
N/A | |
Terminated |
NCT04972318 -
Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia
|
N/A | |
Completed |
NCT04534569 -
Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
|
||
Completed |
NCT04078984 -
Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
|
||
Completed |
NCT04451291 -
Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure
|
N/A | |
Not yet recruiting |
NCT06254313 -
The Role of Cxcr4Hi neutrOPhils in InflueNza
|
||
Not yet recruiting |
NCT04798716 -
The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19
|
Phase 1/Phase 2 | |
Withdrawn |
NCT04909879 -
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome
|
Phase 2 | |
Terminated |
NCT02867228 -
Noninvasive Estimation of Work of Breathing
|
N/A | |
Not yet recruiting |
NCT02881385 -
Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation
|
N/A | |
Completed |
NCT02545621 -
A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
|
||
Completed |
NCT02232841 -
Electrical Impedance Imaging of Patients on Mechanical Ventilation
|
N/A | |
Withdrawn |
NCT02253667 -
Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients
|
N/A | |
Completed |
NCT01504893 -
Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia
|
N/A | |
Completed |
NCT02889770 -
Dead Space Monitoring With Volumetric Capnography in ARDS Patients
|
N/A | |
Withdrawn |
NCT01927237 -
Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide
|
N/A | |
Completed |
NCT01680783 -
Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure
|
N/A | |
Completed |
NCT02814994 -
Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients
|
N/A |