Acute Respiratory Distress Syndrome Clinical Trial
— COVID-19Official title:
A Randomized Pilot Clinical Trial of the Effects in Oxygenation and Hypoxic Pulmonary Vasoconstriction of Sevoflurane in Patient's Whit ARDS Secondary to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2)
Verified date | August 2021 |
Source | Unidad Temporal COVID-19 en Centro Citibanamex |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Summary Currently, the COVID-19 pandemic has overtaken health systems worldwide, exceeding the capacity of intensive care units. In addition to this, countries such as the United States have reported a decrease in the supplies of drugs such as Propofol and Midazolam (traditionally used as sedatives in patients with invasive mechanical ventilation), so in the absence until now of a specific treatment against SARS-COV-2 virus, improving the support strategies in patients in the severe spectrum of the disease Acute Respiratory Distress Syndrome (ARDS) is a priority. Given the global state of emergency due to COVID-19, the use of sevoflurane has the potential to mitigate the shortages of sedative drugs, promote the recovery of patients with ARDS, and potentially reduce mortality. A study will be conducted to evaluate the effect of sevoflurane as inhalation sedation in patients with ARDS secondary to SARS-COV2 compared to the standard. The primary objective of the study is to assess the difference in oxygenation, for which the calculation of the partial pressure of arterial oxygen to fractional inspired oxygen concentration ratio (PaO2 / FiO2) will be used at 24 and 48 hours. Also, the effect of the possible attenuation or inhibition of hypoxic pulmonary vasoconstriction will be evaluated by hemodynamic monitoring with a pulmonary artery catheter and transthoracic echocardiography and its possible effect on the right ventricle. Outcome: we expect an improvement in oxygenation and consequently a reduction in the days of invasive mechanical ventilation, stay in the intensive care unit (ICU) and hospital. In addition to evaluating its possible anti-inflammatory effect and probably establishing a safe and effective alternative and possibly with greater benefits compared to standard intravenous sedation.
Status | Completed |
Enrollment | 24 |
Est. completion date | May 15, 2021 |
Est. primary completion date | November 30, 2020 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. Over 18 years 2. Both genders 3. Diagnosis of COVID-19 (SARS-COV2) with moderate to severe ARDS from the Berlin classification (PaO2 / FiO2: < 200). Exclusion Criteria: 1. Acute kidney failure. 2. Severe liver failure 3. Suspected or documented intracranial hypertension. 4. Family history of malignant hyperthermia. 5. History of malignant hyperthermia. 6. Documented chronic lung disease. 7. Documented chronic pulmonary hypertension 8. Patients who do not sign informed consent. |
Country | Name | City | State |
---|---|---|---|
Mexico | Adrián Palacios Chavarria | Mexico City |
Lead Sponsor | Collaborator |
---|---|
Unidad Temporal COVID-19 en Centro Citibanamex |
Mexico,
Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003 Mar 19;41(6):1021-7. — View Citation
Abe K, Shimizu T, Takashina M, Shiozaki H, Yoshiya I. The effects of propofol, isoflurane, and sevoflurane on oxygenation and shunt fraction during one-lung ventilation. Anesth Analg. 1998 Nov;87(5):1164-9. — View Citation
Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress sy — View Citation
Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N — View Citation
Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015 Feb 19;372(8):74 — View Citation
Augustine DX, Coates-Bradshaw LD, Willis J, Harkness A, Ring L, Grapsa J, Coghlan G, Kaye N, Oxborough D, Robinson S, Sandoval J, Rana BS, Siva A, Nihoyannopoulos P, Howard LS, Fox K, Bhattacharyya S, Sharma V, Steeds RP, Mathew T. Echocardiographic asses — View Citation
Beck DH, Doepfmer UR, Sinemus C, Bloch A, Schenk MR, Kox WJ. Effects of sevoflurane and propofol on pulmonary shunt fraction during one-lung ventilation for thoracic surgery. Br J Anaesth. 2001 Jan;86(1):38-43. — View Citation
Brochard L, Slutsky A, Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am J Respir Crit Care Med. 2017 Feb 15;195(4):438-442. doi: 10.1164/rccm.201605-1081CP. — View Citation
Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute res — View Citation
Combes A, Hajage D, Capellier G, Demoule A, Lavoué S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, Maury E, Levy B, Cohen Y, Richard C, Kalfon P, Bouadma L, Mehdaoui H, Beduneau G, Lebreton G, Brochard L, Ferguson ND, Fan E, Slutsky AS, Brodie D, — View Citation
Cruz JC, Metting PJ. Understanding the meaning of the shunt fraction calculation. J Clin Monit. 1987 Apr;3(2):124-34. — View Citation
Ferrando C, Aguilar G, Piqueras L, Soro M, Moreno J, Belda FJ. Sevoflurane, but not propofol, reduces the lung inflammatory response and improves oxygenation in an acute respiratory distress syndrome model: a randomised laboratory study. Eur J Anaesthesio — View Citation
Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, Aldecoa C, Martínez-Pallí G, Martínez-González MA, Slutsky AS, Villar J; COVID-19 Spanish ICU Network. Clinical features, ventilatory management, and outcome of ARDS caused by — View Citation
Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, Yuan Q, Xiao X. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020 Jun;39(6):1011-1019. doi: 10.1007/s10096-020-03874-z. Epub 2020 Apr 14. Review. — View Citation
Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girar — View Citation
Harkin CP, Pagel PS, Kersten JR, Hettrick DA, Warltier DC. Direct negative inotropic and lusitropic effects of sevoflurane. Anesthesiology. 1994 Jul;81(1):156-67. Erratum in: Anesthesiology 1994 Oct;81(4):1080. — View Citation
Ishibe Y, Gui X, Uno H, Shiokawa Y, Umeda T, Suekane K. Effect of sevoflurane on hypoxic pulmonary vasoconstriction in the perfused rabbit lung. Anesthesiology. 1993 Dec;79(6):1348-53. — View Citation
Jabaudon M, Boucher P, Imhoff E, Chabanne R, Faure JS, Roszyk L, Thibault S, Blondonnet R, Clairefond G, Guérin R, Perbet S, Cayot S, Godet T, Pereira B, Sapin V, Bazin JE, Futier E, Constantin JM. Sevoflurane for Sedation in Acute Respiratory Distress Sy — View Citation
Kellner P, Müller M, Piegeler T, Eugster P, Booy C, Schläpfer M, Beck-Schimmer B. Sevoflurane Abolishes Oxygenation Impairment in a Long-Term Rat Model of Acute Lung Injury. Anesth Analg. 2017 Jan;124(1):194-203. — View Citation
Kerbaul F, Bellezza M, Guidon C, Roussel L, Imbert M, Carpentier JP, Auffray JP. Effects of sevoflurane on hypoxic pulmonary vasoconstriction in anaesthetized piglets. Br J Anaesth. 2000 Sep;85(3):440-5. — View Citation
Kerbaul F, Bellezza M, Mekkaoui C, Feier H, Guidon C, Gouvernet J, Rolland PH, Gouin F, Mesana T, Collart F. Sevoflurane alters right ventricular performance but not pulmonary vascular resistance in acutely instrumented anesthetized pigs. J Cardiothorac V — View Citation
Lesitsky MA, Davis S, Murray PA. Preservation of hypoxic pulmonary vasoconstriction during sevoflurane and desflurane anesthesia compared to the conscious state in chronically instrumented dogs. Anesthesiology. 1998 Dec;89(6):1501-8. — View Citation
Lindqvist P, Söderberg S, Gonzalez MC, Tossavainen E, Henein MY. Echocardiography based estimation of pulmonary vascular resistance in patients with pulmonary hypertension: a simultaneous Doppler echocardiography and cardiac catheterization study. Eur J E — View Citation
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan — View Citation
Ma X, Vervoort D. Critical care capacity during the COVID-19 pandemic: Global availability of intensive care beds. J Crit Care. 2020 Aug;58:96-97. doi: 10.1016/j.jcrc.2020.04.012. Epub 2020 Apr 23. — View Citation
Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020 Jun 9;323(22):2329-2330. doi: 10.1001/jama.2020.6825. — View Citation
Matsuse S, Hara Y, Ohkura T. The possible influence of pulmonary arterio-venous shunt and hypoxic pulmonary vasoconstriction on arterial sevoflurane concentration during one-lung ventilation. Anesth Analg. 2011 Feb;112(2):345-8. doi: 10.1213/ANE.0b013e318 — View Citation
National Heart, Lung, and Blood Institute PETAL Clinical Trials Network, Moss M, Huang DT, Brower RG, Ferguson ND, Ginde AA, Gong MN, Grissom CK, Gundel S, Hayden D, Hite RD, Hou PC, Hough CL, Iwashyna TJ, Khan A, Liu KD, Talmor D, Thompson BT, Ulysse CA, — View Citation
Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute r — View Citation
Patel SS, Goa KL. Sevoflurane. A review of its pharmacodynamic and pharmacokinetic properties and its clinical use in general anaesthesia. Drugs. 1996 Apr;51(4):658-700. Review. Erratum in: Drugs 1996 Aug;52(2):253. — View Citation
Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care. 2014 Aug 22;4:28. doi: 10.1186/s13613-014-0028-6. eCollection 2014. Review. — View Citation
Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012 Jan;92(1):367-520. doi: 10.1152/physrev.00041.2010. Review. Erratum in: Physiol Rev. 2014 Jul;94(3):989. — View Citation
Venkateshvaran A, Hamade J, Kjellström B, Lund LH, Manouras A. Doppler estimates of pulmonary vascular resistance to phenotype pulmonary hypertension in heart failure. Int J Cardiovasc Imaging. 2019 Aug;35(8):1465-1472. doi: 10.1007/s10554-019-01591-z. Ep — View Citation
Voigtsberger S, Lachmann RA, Leutert AC, Schläpfer M, Booy C, Reyes L, Urner M, Schild J, Schimmer RC, Beck-Schimmer B. Sevoflurane ameliorates gas exchange and attenuates lung damage in experimental lipopolysaccharide-induced lung injury. Anesthesiology. — View Citation
Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2011 Sep 1;184(5):514-20. doi: 10.1164/rccm.201010-1584CI. Review. — View Citation
Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, Laranjeira LN, Paisani DM, Damiani LP, Guimarães HP, Romano ER, Regenga MM, Taniguchi LNT, Teixeira C, Pinheiro de Ol — View Citation
Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk Factors Associated With Acute Respiratory Distress Syndro — View Citation
Xu WY, Wang N, Xu HT, Yuan HB, Sun HJ, Dun CL, Zhou SQ, Zou Z, Shi XY. Effects of sevoflurane and propofol on right ventricular function and pulmonary circulation in patients undergone esophagectomy. Int J Clin Exp Pathol. 2013 Dec 15;7(1):272-9. eCollect — View Citation
* Note: There are 38 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Evaluation of Oxygenation | The primary objective of the study is measure the difference in the oxygenation whit two different methods of sedation, inhaled (sevorane) and intravenous (propofol). The oxygenation will be measured whit PaO2 / FiO2 ratio will be used, taking peripheral arterial blood, with FiO2 at 100% one hour after the started of sedation corresponding to each group, again at 24 and 48 hours. | 24 and 48 hours | |
Primary | The effect in the hypoxic pulmonary vasoconstriction whit two different type sedation. | The changes in pulmonary vascular tone and will be measured invasively through a pulmonary arterial catheter (Swan-Ganz) for which the following formula will be used:
PVR=(MPAP-LAP)/CO Where PVR = pulmonary vascular resistance (dyn*s/cm), MPAP = mean pulmonary artery pressure (mm Hg), LAP = left atrial pressure or pulmonary wedge pressure (mm Hg) and CO = cardiac output (L/min). *79.92 is a constant to equal the units. |
24 and 48 hours | |
Secondary | Determination of the anti-inflammatory effect. | The anti-inflammatory effect will be measured with serum levels of interleukin 6 (IL-6), C-reactive protein (CRP), ferritin, DHL (lactic dehydrogenase), taken by venipuncture on admission, at 24 and 48 hours. | 24 and 48 hours | |
Secondary | Measurement of dead space. | The physiological dead space expressed as a percentage will be calculated using the Bohr formula:
DS=(PACO2-PEtCO2)/PACO2 Where DS = dead space, PaCO2 = partial pressure of arterial CO2 in mmHg, PEtCO2 = end tidal CO2 pressure in mmHg. |
24 and 48 hours |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04384445 -
Zofin (Organicell Flow) for Patients With COVID-19
|
Phase 1/Phase 2 | |
Recruiting |
NCT05535543 -
Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04695392 -
Restore Resilience in Critically Ill Children
|
N/A | |
Terminated |
NCT04972318 -
Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia
|
N/A | |
Completed |
NCT04534569 -
Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
|
||
Completed |
NCT04078984 -
Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
|
||
Completed |
NCT04451291 -
Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure
|
N/A | |
Not yet recruiting |
NCT06254313 -
The Role of Cxcr4Hi neutrOPhils in InflueNza
|
||
Not yet recruiting |
NCT04798716 -
The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19
|
Phase 1/Phase 2 | |
Withdrawn |
NCT04909879 -
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome
|
Phase 2 | |
Terminated |
NCT02867228 -
Noninvasive Estimation of Work of Breathing
|
N/A | |
Not yet recruiting |
NCT02881385 -
Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation
|
N/A | |
Completed |
NCT02545621 -
A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
|
||
Completed |
NCT02232841 -
Electrical Impedance Imaging of Patients on Mechanical Ventilation
|
N/A | |
Withdrawn |
NCT02253667 -
Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients
|
N/A | |
Completed |
NCT02889770 -
Dead Space Monitoring With Volumetric Capnography in ARDS Patients
|
N/A | |
Completed |
NCT01504893 -
Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia
|
N/A | |
Withdrawn |
NCT01927237 -
Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide
|
N/A | |
Completed |
NCT01680783 -
Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure
|
N/A | |
Completed |
NCT02814994 -
Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients
|
N/A |