Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT06204276
Other study ID # 763/2566(IRB4)
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date January 20, 2024
Est. completion date May 15, 2025

Study information

Verified date January 2024
Source Siriraj Hospital
Contact Nuttapol Rittayamai, M.D.
Phone +664197757
Email nuttapol.rit@mahidol.ac.th
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The goal of this randomized crossover physiological study is to evaluate the physiologic effects of asymmetrical nasal cannula and conventional nasal cannula in patients with acute respiratory failure. The main questions it aims to answer are: - Does the asymmetrical high-flow nasal cannula reduce the diaphragm and parasternal intercostal work activity of breathing measured by ultrasound compared to conventional high-flow nasal cannula? - What is the effect of the asymmetrical high-flow nasal cannula on breathing pattern, gas exchange, and hemodynamic variables compared to conventional high-flow nasal cannula? Participants will received asymmetrical high-flow nasal cannula or conventional high-flow nasal cannula at a flow rate of 40 and 60 L/min in a random order.


Description:

High-flow nasal cannula (HFNC) is increasingly used in patients with acute respiratory failure. The physiologic benefits of HFNC can be explained via several mechanisms. These mechanisms lead to improve alveolar ventilation and decrease patient's inspiratory effort directly or indirectly. Recent clinical practice guidelines recommended to use HFNC in patients with acute hypoxemic respiratory failure over conventional oxygen therapy (COT) and noninvasive ventilation (NIV). A landmark clinical study demonstrated that patients with acute hypoxemic respiratory failure who received HFNC had better survival than COT and NIV. A systematic review and meta-analysis also demonstrated that HFNC significantly reduced escalation of respiratory support in patients with acute hypoxemic respiratory failure. HFNC can also be an alternative respiratory support in patients with acute on chronic hypercapnic chronic obstructive pulmonary disease (COPD). Several physiological and clinical studies in COPD patients with exacerbations have also suggested that HFNC was not inferior to noninvasive ventilation (NIV) in COPD patients with mild to moderate exacerbation, in terms of gas exchange, treatment failure, intubation rate, and mortality rate. It may be also be used during NIV interruptions or after extubation. Recently, an asymmetrical HFNC interface has been developed with a feature of one prong of smaller diameter and the other prong of larger diameter resulting in an increase in the overall cross-sectional area compared to conventional HFNC interface. An experimental study has shown that asymmetrical nasal cannula potentially increased positive end-expiratory pressure (PEEP) and enhanced carbon dioxide washout compared to conventional nasal cannula. Different respective effects in terms of pressure, resistance, and dead space washout between the two types of cannulas may explain different results, according to the population. The aim of this study is to evaluate the physiologic effects of asymmetrical nasal cannula and conventional nasal cannula on diaphragm and parasternal intercostal activity of breathing measured by ultrasound in patients with acute respiratory failure.


Recruitment information / eligibility

Status Recruiting
Enrollment 40
Est. completion date May 15, 2025
Est. primary completion date January 15, 2025
Accepts healthy volunteers No
Gender All
Age group 18 Years to 90 Years
Eligibility Patients with acute hypoxemia respiratory failure Inclusion Criteria: - Age > 18 years old - Acute respiratory failure within 7 days of hospital admission? - Hypoxemia defined by arterial partial pressure of oxygen (PaO2)/FiO2 < 300 mmHg or SpO2/FiO2 < 315 - Already supported with HFNC device Exclusion Criteria: - Respiratory acidosis: pH < 7.30 and PaCO2 > 45 mmHg - Hemodynamic instability requiring vasopressor initiation - Diminished level of consciousness or uncooperative - Active hemoptysis or pneumothorax requiring a chest tube - Chronic severe neuromuscular disease - Pregnancy Patients with acute hypercapnic COPD Inclusion criteria - Age > 40 years old - Diagnosed COPD according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guideline (postbronchodilator forced expiratory volume at 1 second (FEV1)/forced vital capacity (FVC) < 70%) - Exacerbation requiring hospitalization; at least 2 of the following criteria 1. Respiratory rate > 24/min 2. Use of respiratory accessory muscles or paradoxical motion of the abdomen 3. Acute respiratory acidosis with arterial or venous pH < 7.35 and/or PaCO2 > 45 mmHg Exclusion criteria - pH < 7.25 - Hemodynamic instability requiring vasopressor initiation - Persistent hypoxemia despite supplemental oxygen therapy - Diminished level of consciousness or uncooperative - Active hemoptysis or pneumothorax requiring a chest tube - Associated severe chronic neuromuscular disease - Pregnancy

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Experimental: Asymmetrical high-flow nasal cannula
Asymmetrical high-flow nasal cannula will be set at 40 and 60 L/min in a random order. Temperature will be set at 37 degree celsius and inspired oxygen fraction (FiO2) will be adjusted to maintain oxygen saturation by pulse oximetry (SpO2) >/= 94% in acute hypoxemic patients and between 92-94% in acute hypercapnic COPD patients
Active comparator: Conventional high-flow nasal cannula
Conventional high-flow nasal cannula will be set at 40 and 60 L/min in a random order. Temperature will be set at 37 degree celsius and FiO2 will be adjusted to maintain SpO2 >/= 94% in acute hypoxemic patients and between 92-94% in acute hypercapnic COPD patients

Locations

Country Name City State
Thailand Faculty of Medicine Siriraj Hospital Bangkok Noi Bangkok

Sponsors (1)

Lead Sponsor Collaborator
Siriraj Hospital

Country where clinical trial is conducted

Thailand, 

References & Publications (16)

Biselli P, Fricke K, Grote L, Braun AT, Kirkness J, Smith P, Schwartz A, Schneider H. Reductions in dead space ventilation with nasal high flow depend on physiological dead space volume: metabolic hood measurements during sleep in patients with COPD and controls. Eur Respir J. 2018 May 30;51(5):1702251. doi: 10.1183/13993003.02251-2017. Print 2018 May. — View Citation

Cortegiani A, Longhini F, Madotto F, Groff P, Scala R, Crimi C, Carlucci A, Bruni A, Garofalo E, Raineri SM, Tonelli R, Comellini V, Lupia E, Vetrugno L, Clini E, Giarratano A, Nava S, Navalesi P, Gregoretti C; H. F.-AECOPD study investigators. High flow nasal therapy versus noninvasive ventilation as initial ventilatory strategy in COPD exacerbation: a multicenter non-inferiority randomized trial. Crit Care. 2020 Dec 14;24(1):692. doi: 10.1186/s13054-020-03409-0. — View Citation

Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, Brochard LJ, Bolz SS, Rubenfeld GD, Kavanagh BP, Ferguson ND. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015 Apr;41(4):642-9. doi: 10.1007/s00134-015-3687-3. Epub 2015 Feb 19. Erratum In: Intensive Care Med. 2015 Apr;41(4):734. Sebastien-Bolz, Steffen [corrected to Bolz, Steffen-Sebastien]. — View Citation

Lee MK, Choi J, Park B, Kim B, Lee SJ, Kim SH, Yong SJ, Choi EH, Lee WY. High flow nasal cannulae oxygen therapy in acute-moderate hypercapnic respiratory failure. Clin Respir J. 2018 Jun;12(6):2046-2056. doi: 10.1111/crj.12772. Epub 2018 Mar 5. — View Citation

Longhini F, Pisani L, Lungu R, Comellini V, Bruni A, Garofalo E, Laura Vega M, Cammarota G, Nava S, Navalesi P. High-Flow Oxygen Therapy After Noninvasive Ventilation Interruption in Patients Recovering From Hypercapnic Acute Respiratory Failure: A Physiological Crossover Trial. Crit Care Med. 2019 Jun;47(6):e506-e511. doi: 10.1097/CCM.0000000000003740. — View Citation

Mauri T, Turrini C, Eronia N, Grasselli G, Volta CA, Bellani G, Pesenti A. Physiologic Effects of High-Flow Nasal Cannula in Acute Hypoxemic Respiratory Failure. Am J Respir Crit Care Med. 2017 May 1;195(9):1207-1215. doi: 10.1164/rccm.201605-0916OC. — View Citation

Nagata K, Horie T, Chohnabayashi N, Jinta T, Tsugitomi R, Shiraki A, Tokioka F, Kadowaki T, Watanabe A, Fukui M, Kitajima T, Sato S, Tsuda T, Kishimoto N, Kita H, Mori Y, Nakayama M, Takahashi K, Tsuboi T, Yoshida M, Hataji O, Fuke S, Kagajo M, Nishine H, Kobayashi H, Nakamura H, Okuda M, Tachibana S, Takata S, Osoreda H, Minami K, Nishimura T, Ishida T, Terada J, Takeuchi N, Kohashi Y, Inoue H, Nakagawa Y, Kikuchi T, Tomii K. Home High-Flow Nasal Cannula Oxygen Therapy for Stable Hypercapnic COPD: A Randomized Clinical Trial. Am J Respir Crit Care Med. 2022 Dec 1;206(11):1326-1335. doi: 10.1164/rccm.202201-0199OC. — View Citation

Ricard JD, Roca O, Lemiale V, Corley A, Braunlich J, Jones P, Kang BJ, Lellouche F, Nava S, Rittayamai N, Spoletini G, Jaber S, Hernandez G. Use of nasal high flow oxygen during acute respiratory failure. Intensive Care Med. 2020 Dec;46(12):2238-2247. doi: 10.1007/s00134-020-06228-7. Epub 2020 Sep 8. — View Citation

Rittayamai N, Phuangchoei P, Tscheikuna J, Praphruetkit N, Brochard L. Effects of high-flow nasal cannula and non-invasive ventilation on inspiratory effort in hypercapnic patients with chronic obstructive pulmonary disease: a preliminary study. Ann Intensive Care. 2019 Oct 22;9(1):122. doi: 10.1186/s13613-019-0597-5. — View Citation

Rochwerg B, Einav S, Chaudhuri D, Mancebo J, Mauri T, Helviz Y, Goligher EC, Jaber S, Ricard JD, Rittayamai N, Roca O, Antonelli M, Maggiore SM, Demoule A, Hodgson CL, Mercat A, Wilcox ME, Granton D, Wang D, Azoulay E, Ouanes-Besbes L, Cinnella G, Rauseo M, Carvalho C, Dessap-Mekontso A, Fraser J, Frat JP, Gomersall C, Grasselli G, Hernandez G, Jog S, Pesenti A, Riviello ED, Slutsky AS, Stapleton RD, Talmor D, Thille AW, Brochard L, Burns KEA. The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline. Intensive Care Med. 2020 Dec;46(12):2226-2237. doi: 10.1007/s00134-020-06312-y. Epub 2020 Nov 17. — View Citation

Slobod D, Spinelli E, Crotti S, Lissoni A, Galazzi A, Grasselli G, Mauri T. Effects of an asymmetrical high flow nasal cannula interface in hypoxemic patients. Crit Care. 2023 Apr 18;27(1):145. doi: 10.1186/s13054-023-04441-6. — View Citation

Tan D, Walline JH, Ling B, Xu Y, Sun J, Wang B, Shan X, Wang Y, Cao P, Zhu Q, Geng P, Xu J. High-flow nasal cannula oxygen therapy versus non-invasive ventilation for chronic obstructive pulmonary disease patients after extubation: a multicenter, randomized controlled trial. Crit Care. 2020 Aug 6;24(1):489. doi: 10.1186/s13054-020-03214-9. — View Citation

Tatkov S, Rees M, Gulley A, van den Heuij LGT, Nilius G. Asymmetrical nasal high flow ventilation improves clearance of CO2 from the anatomical dead space and increases positive airway pressure. J Appl Physiol (1985). 2023 Feb 1;134(2):365-377. doi: 10.1152/japplphysiol.00692.2022. Epub 2023 Jan 12. — View Citation

Vieira F, Bezerra FS, Coudroy R, Schreiber A, Telias I, Dubo S, Cavalot G, Pereira SM, Piraino T, Brochard LJ. High Flow Nasal Cannula compared to Continuous Positive Airway Pressure: a bench and physiological study. J Appl Physiol (1985). 2022 May 5. doi: 10.1152/japplphysiol.00416.2021. Online ahead of print. — View Citation

Vivier E, Mekontso Dessap A, Dimassi S, Vargas F, Lyazidi A, Thille AW, Brochard L. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med. 2012 May;38(5):796-803. doi: 10.1007/s00134-012-2547-7. Epub 2012 Apr 5. — View Citation

Zambon M, Greco M, Bocchino S, Cabrini L, Beccaria PF, Zangrillo A. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a systematic review. Intensive Care Med. 2017 Jan;43(1):29-38. doi: 10.1007/s00134-016-4524-z. Epub 2016 Sep 12. — View Citation

* Note: There are 16 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Diaphragm thickening fraction Diaphragm thickening fraction measured by ultrasound 15 minutes
Secondary Parasternal intercostal thickening fraction Parasternal intercostal thickening fraction measured by ultrasound 15 minutes
Secondary Parasternal intercostal/diaphragm thickening fraction ratio Contribution between parasternal intercostal and diaphragm thickening fraction 15 minutes
Secondary Respiratory rate Respiratory rate 15 minutes
Secondary Oxygen saturation Pulse oximetry 15 minutes
Secondary Transcutaneous carbon dioxide (CO2) pressure Transcutaneous CO2 monitor 15 minutes
Secondary Mean arterial pressure Blood pressure 15 minutes
Secondary Heart rate Heart rate 15 minutes
See also
  Status Clinical Trial Phase
Not yet recruiting NCT06007495 - Pilot Physiological Evaluation of an Investigational Mask With Expiratory Washout. N/A
Completed NCT05060926 - Intubation Prediction in COVID-19 Patients Treated With Awake Prone Positioning
Recruiting NCT05203536 - Respiratory Mechanics Assessment During Assisted Mechanical Ventilation
Completed NCT04570384 - Intravenous L-Citrulline Influence on the Need for Invasive Mechanical Ventilation for Acute Hypoxemic Respiratory Failure in Patients With COVID-19 Phase 2
Not yet recruiting NCT05499039 - High Flow Nasal Cannula Versus Non-Invasive (NIV)in Both Hypoxemic and Hypercapnic Respiratory Failure. N/A
Completed NCT04568642 - Comparing Closed-loop FiO2 Controller With Conventional Control of FiO2 N/A
Completed NCT03653806 - Automated Analysis of EIT Data for PEEP Setting
Completed NCT01747109 - Benefits of Optiflow® Device for Preoxygenation Before Intubation in Acute Hypoxemic Respiratory Failure : The PREOXYFLOW Study N/A
Terminated NCT04632043 - Early Versus Delayed Intubation of Patients With COVID-19 N/A
Completed NCT04581811 - Prolonged Prone Positioning for COVID-19-induced Acute Respiratory Distress Syndrome (ARDS) N/A
Not yet recruiting NCT06064409 - Optimal Timing and Failure Prediction of High Flow Nasal Cannula Oxygen Therapy in Emergency Department: Prospective Observational Single Center Study
Completed NCT03133520 - Effectiveness of High Flow Oxygen Therapy in Patients With Hematologic Malignancy Acute Hypoxemic Respiratory Failure N/A
Not yet recruiting NCT06438198 - Early Switch From Controlled to Assisted Ventilation N/A
Recruiting NCT04997265 - Strategies for Anticoagulation During Venovenous ECMO N/A
Completed NCT05083130 - Awake Prone Positioning in Moderate to Severe COVID-19 N/A
Active, not recruiting NCT06374589 - Closed-Loop O2 Use During High Flow Oxygen Treatment Of Critical Care Adult Patients (CLOUDHFOT) N/A
Active, not recruiting NCT06333002 - Machine Learning Model to Predict Outcome and Duration of Mechanical Ventilation in Acute Hypoxemic Respiratory Failure
Recruiting NCT05078034 - HNFO With or Without Helmet NIV for Oxygenation Support in Acute Respiratory Failure Pilot RCT N/A
Recruiting NCT03513809 - Inflammation and Distribution of Pulmonary Ventilation Before and After Tracheal Intubation in ARDS Patients
Terminated NCT04395807 - Helmet CPAP Versus HFNC in COVID-19 N/A