Clinical Trials Logo

Clinical Trial Summary

Predicting fluid responsiveness is primordial when caring for patients with circulatory shock as it allows correction of preload-dependent low cardiac output states, while preserving patients of the deleterious effects of excessive fluid resuscitation. Patients with severe acute respiratory distress syndrome (ARDS) treated with prone positioning (PP) are a specific subset of patients, as 1) they frequently present with shock; 2) excessive fluid administration may lead to respiratory worsening due to increased hydrostatic oedema with potential subsequent worse clinical outcome; and 3) all available dynamic tests evaluating fluid responsiveness can only be performed in patients in the supine condition (which in the case of severe ARDS patients in PP occurs only for 8h over 24h). These elements warrant the development of specific tests allowing the clinician to predict fluid responsiveness with enough exactitude when caring for these patients. We hypothesize that there exists diagnostic heterogeneity in the predictive performance of 4 clinical tests to identify fluid responsiveness in ARDS patients in PP. For the matter of this study, these 4 tests are the Trendelenburg maneuver, the end-expiratory occlusion test, the end-expiratory occlusion test associated with the end-inspiratory occlusion test, and the tidal volume challenge. The diagnostic reference of the study will be the relative change in cardiac index measured by transpulmonary thermodilution before and after a 500 ml fluid bolus, and will allow the adjudication of patients as being fluid responsive or not. The primary objective of the study is to determine the area under the ROC curve of each of the 4 tests, with their respective 95% confidence interval. All enrolled patients will perform the 4 tests following a cross-over design and in a randomized sequence, separated by 1-min wash-out periods with return to hemodynamic baseline values, and concluded with the 500-ml fluid bolus. Patients will only participate once. The expected duration of study participation is 30 minutes maximum.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT05898269
Study type Interventional
Source Hospices Civils de Lyon
Contact Laurent BITKER, Dr
Phone 4 26 10 94 93
Email laurent.bitker@chu-lyon.fr
Status Recruiting
Phase N/A
Start date October 6, 2023
Completion date October 2026

See also
  Status Clinical Trial Phase
Completed NCT04384445 - Zofin (Organicell Flow) for Patients With COVID-19 Phase 1/Phase 2
Recruiting NCT05535543 - Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
Completed NCT04695392 - Restore Resilience in Critically Ill Children N/A
Terminated NCT04972318 - Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia N/A
Completed NCT04534569 - Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
Completed NCT04078984 - Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
Completed NCT04451291 - Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure N/A
Not yet recruiting NCT06254313 - The Role of Cxcr4Hi neutrOPhils in InflueNza
Not yet recruiting NCT04798716 - The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19 Phase 1/Phase 2
Withdrawn NCT04909879 - Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome Phase 2
Terminated NCT02867228 - Noninvasive Estimation of Work of Breathing N/A
Not yet recruiting NCT02881385 - Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation N/A
Completed NCT02545621 - A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
Withdrawn NCT02253667 - Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients N/A
Completed NCT02232841 - Electrical Impedance Imaging of Patients on Mechanical Ventilation N/A
Completed NCT01504893 - Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia N/A
Withdrawn NCT01927237 - Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide N/A
Completed NCT02889770 - Dead Space Monitoring With Volumetric Capnography in ARDS Patients N/A
Completed NCT02814994 - Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients N/A
Completed NCT01680783 - Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure N/A