Clinical Trials Logo

Clinical Trial Summary

Spontaneous Breathing (SB) can be potentially harmful in patient with Acute Respiratory Distress Syndrome (ARDS) during the transition phase of passive ventilation to partial ventilatory support. The application of high Positive End Expiratory Pressure (PEEP) during SB has shown to ameliorate the progression of lung injury by decreasing the TP and esophageal pressure (EP) swings and the stress / strain applied to the lung. The mechanisms proposed to be responsible for these effects are the activation of Hering Breuer reflex, the recruitment of previously collapsed tissue, the homogenization of lung and the improvement of respiratory system compliance and the impairment in the length - tension relationship of the diaphragm. If all the previously explained mechanisms have an effect on the control of inspiratory effort, a decrease in the intensity of effort is expected during an end-inspiratory occlusion in patients who will respond to high PEEP application. Based on this rationale, the investigators developed an index called "Inspiratory Ratio" (IR) to predict the response of patient's inspiratory effort to the application of high PEEP without need of esophageal manometry.


Clinical Trial Description

Spontaneous Breathing (SB) can be potentially harmful in patient with Acute Respiratory Distress Syndrome (ARDS) during the transition phase of passive ventilation to partial ventilatory support. A high respiratory drive and consequently, a strong inspiratory effort, may produce large transpulmonary pressure (TP) swings mainly in dependent lung regions closer to the diaphragm and cause alveolar rupture and inflammatory mediators release. The application of high Positive End Expiratory Pressure (PEEP) during SB has shown to ameliorate the progression of lung injury by decreasing the TP and esophageal pressure (EP) swings and the stress / strain applied to the lung. The mechanisms proposed to be responsible for these effects are the activation of Hering Breuer reflex caused by a greater stretch of the lung parenchyma at the end of inspiration; the recruitment of previously collapsed tissue, the homogenization of lung ("fluid like behavior") and the improvement of respiratory system compliance (Crs); and the impairment in the length - tension relationship of the diaphragm which produces mechanical disadvantage to generate force due to a higher lung volume. However, it is uncertain which patient will respond adequately to the application of high PEEP and consequently will reduce the inspiratory effort. If all the previously explained mechanisms have an effect on the control of inspiratory effort, in patients who will respond to high PEEP application, a decrease in inspiratory effort is expected during an end-inspiratory occlusion. At end-inspiration lung parenchyma is more homogeneous, the lung volume is higher and the diaphragmic dome is flatter compared to the physiological condition end of expiration, where the lung volume is lower, the parenchyma is more heterogeneous and the diaphragmatic neuromechanical coupling is better. Based on this rationale, the investigators developed an index called "Inspiratory Ratio" (IR) to predict the response of patient's inspiratory effort to the application of high PEEP without having to measure esophageal pressure. The IR will be calculated using the following formula: (IPSexp - IPSinsp ) / (IPSexp) x 100 IPSexp = negative deflection in airway pressure expiratory pause; IPSinsp = negative deflection in airway pressure end inspiratory pause ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04524091
Study type Observational
Source Sanatorio Anchorena San Martin
Contact Joaquin Pérez, PT
Phone +542245505907
Email licjoaquinperez@hotmail.com
Status Recruiting
Phase
Start date August 1, 2020
Completion date October 1, 2025

See also
  Status Clinical Trial Phase
Completed NCT04384445 - Zofin (Organicell Flow) for Patients With COVID-19 Phase 1/Phase 2
Recruiting NCT05535543 - Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
Completed NCT04695392 - Restore Resilience in Critically Ill Children N/A
Terminated NCT04972318 - Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia N/A
Completed NCT04534569 - Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
Completed NCT04078984 - Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
Completed NCT04451291 - Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure N/A
Not yet recruiting NCT06254313 - The Role of Cxcr4Hi neutrOPhils in InflueNza
Not yet recruiting NCT04798716 - The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19 Phase 1/Phase 2
Withdrawn NCT04909879 - Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome Phase 2
Terminated NCT02867228 - Noninvasive Estimation of Work of Breathing N/A
Not yet recruiting NCT02881385 - Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation N/A
Completed NCT02545621 - A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
Withdrawn NCT02253667 - Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients N/A
Completed NCT02232841 - Electrical Impedance Imaging of Patients on Mechanical Ventilation N/A
Completed NCT01504893 - Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia N/A
Withdrawn NCT01927237 - Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide N/A
Completed NCT02889770 - Dead Space Monitoring With Volumetric Capnography in ARDS Patients N/A
Completed NCT01680783 - Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure N/A
Completed NCT02814994 - Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients N/A