Clinical Trials Logo

Clinical Trial Summary

Worldwide, diabetic kidney disease (DKD) is the most common cause of chronic and end stage kidney disease. Large-sized prospective randomized clinical trials indicate that intensified glucose and blood pressure control, the latter especially by using agents that interfere with the renin-angiotensin-aldosterone system (RAS), halts the onset and (particularly) the progression of DKD, in both type 1 Diabetes Mellitus (T1DM) and type 2 Diabetes Mellitus (T2DM) patients. However, despite the wide use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), a considerable amount of patients develop DKD (20-40%), indicating an unmet need for renoprotective therapies as DKD largely causes the increased mortality risk from cardiovascular disease (CVD) in people with diabetes. Sodium-glucose linked transporters (SGLT-2) inhibitors are a relatively novel glucose-lowering drug for the treatment of T2DM as they lower plasma glucose levels by blocking renal glucose reabsorption. In addition, these agents exert pleiotropic actions beyond glucose control. As such, SGLT-2 inhibitors decrease proximal sodium reabsorption, reduce blood pressure, body weight and uric acid. In large trials and likely through these pleiotropic effects, SGLT2 inhibitors reduce cardiovascular mortality, hospitalization for heart failure and reduce end stage kidney disease. At this point in time, the renoprotective mechanisms involved with SGLT-2 inhibition still remain speculative, though a consistent finding is that SGLT-2 inhibitors reduce estimated eGFR after first dosing, which is reversible after treatment cessation. This "dip" indicates a renal hemodynamic phenomenon reminiscent of the RAS blockers and is thought to reflect a reduction in intraglomerular pressure. The mechanisms of this observation have only been partially investigated by us and others. From studies in peolpe with T1DM it is hypothesized that SGLT-2 inhibition increases sodium chloride delivery to the macula densa, which in turn augments the afferent arteriolar resistances, known as tubuloglomerular feedback (TGF), consequently reducing glomerular (hyper)filtration and hydrostatic pressure. Recently a trial has been conducted in humans with T2DM to investigate if this also holds true in these patients. Suprisingly, this study showed that the renohemodynamic actions of SGLT-2 inhibition in T2DM are not due to afferent vasoconstriction but rather efferent vasodilation [van Bommel/van Raalte Kidney International 2019 in press]. The investigators realized that the SGLT-2 associated dip in eGFR remains insufficient understood. The increase in sodium excretion following SGLT-2 inhibition peaks at day 2-3 after which it normalizes. It is unknown whether this drop in eGFR is related to this peak in sodium excretion, as the drop remains after normalization of sodium excretion. Therefore it might be possible that glucosuria, by inducing osmotic diuresis, is the main driver of the reduction in intraglomerular pressure more than sodium, since SGLT-2 inhibitors cause persisting glucosuria. Furthermore, it is known that SGLT-2 induced glucosuria and possibly sodium excretion is dependent of renal function and HbA1c and consequently is diminished in people with CKD or without T2DM. However, the renoprotective effects in T2DM are also observed in patients with impaired kidney function and seem statistically independent of glucose levels. Until now it has not been investigated whether or not the SGLT-2 induced eGFR alterations occur in people with CKD with or without T2DM. It is clinically relevant to understand the renal hemodynamics of SGLT-2 inhibitors in these populations since then it is possible to interpret the results from the ongoing trials in people with CKD without T2DM, such as EMPA-KIDNEY and DAPA-CKD. Recently, potential mediators of renal arterole tone, such as adenosine, have been measured to gain more insight into mechanisms of SGLT-2 inhibitor-induced changes in renal hemodynamics. Adenosine is known to augment preglomerular arteriolar resistance. Adenosine was significantly increased after SGLT-2 inhibition, as was also observed in patients with type 1 diabetes. However, it can also induce postglomerular vasodilation via A2aR activation in the presence of RAS blockade. One study in T1DM rats has shown that increased adenosine generation by the macula densa in response to SGLT-2 inhibition suppresses hyperfiltration, as the improvements in preglomerular arteriolar resistance were abolished after adenosine antagonist administration. To date, this has not been investigated in T2DM humans. Therefore, this trial will assess TGF responses with and without adenosine blockade by caffeine.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT04243850
Study type Interventional
Source VU University Medical Center
Contact
Status Withdrawn
Phase Phase 4
Start date July 1, 2020
Completion date March 1, 2022

See also
  Status Clinical Trial Phase
Active, not recruiting NCT05666479 - CGM Monitoring in T2DM Patients Undergoing Orthopaedic Replacement Surgery
Completed NCT05647083 - The Effect of Massage on Diabetic Parameters N/A
Active, not recruiting NCT05661799 - Persistence of Physical Activity in People With Type 2 Diabetes Over Time. N/A
Completed NCT03686722 - Effect of Co-administration of Metformin and Daclatasvir on the Pharmacokinetis and Pharmacodynamics of Metformin Phase 1
Completed NCT02836704 - Comparison of Standard vs Higher Starting Dose of Insulin Glargine in Chinese Patients With Type 2 Diabetes (Glargine Starting Dose) Phase 4
Completed NCT01819129 - Efficacy and Safety of FIAsp Compared to Insulin Aspart in Combination With Insulin Glargine and Metformin in Adults With Type 2 Diabetes Phase 3
Completed NCT04562714 - Impact of Flash Glucose Monitoring in People With Type 2 Diabetes Using Non-Insulin Antihyperglycemic Therapy N/A
Completed NCT02009488 - Treatment Differences Between Canagliflozin and Placebo in Insulin Secretion in Subjects With Type 2 Diabetes Mellitus (T2DM) Phase 1
Completed NCT05896319 - Hyaluronic Acid Treatment of the Post-extraction Tooth Socket Healing in Subjects With Diabetes Mellitus Type 2 N/A
Recruiting NCT05598203 - Effect of Nutrition Education Groups in the Treatment of Patients With Type 2 Diabetes N/A
Completed NCT05046873 - A Research Study Looking Into Blood Levels of Semaglutide and NNC0480-0389 When Given in the Same Injection or in Two Separate Injections in Healthy People Phase 1
Completed NCT04030091 - Pulsatile Insulin Infusion Therapy in Patients With Type 1 and Type 2 Diabetes Mellitus Phase 4
Terminated NCT04090242 - Impact of App Based Diabetes Training Program in Conjunction With the BD Nano Pen Needle in People With T2 Diabetes N/A
Completed NCT03620357 - Continuous Glucose Monitoring & Management In Type 2 Diabetes (T2D) N/A
Completed NCT03604224 - A Study to Observe Clinical Effectiveness of Canagliflozin 300 mg Containing Treatment Regimens in Indian Type 2 Diabetes Participants With BMI>25 kg/m^2, in Real World Clinical Setting
Completed NCT01696266 - An International Survey on Hypoglycaemia Among Insulin-treated Patients With Diabetes
Completed NCT03620890 - Detemir Versus NPH for Type 2 Diabetes Mellitus in Pregnancy Phase 4
Withdrawn NCT05473286 - A Research Study Looking at How Oral Semaglutide Works in People With Type 2 Diabetes in Germany, as Part of Local Clinical Practice
Not yet recruiting NCT05029804 - Effect of Walking Exercise Training on Adherence to Disease Management and Metabolic Control in Diabetes N/A
Completed NCT04531631 - Effects of Dorzagliatin on 1st Phase Insulin and Beta-cell Glucose Sensitivity in T2D and Monogenic Diabetes Phase 2