Clinical Trials Logo

Clinical Trial Summary

Mechanical ventilation is frequently used in the operating room and the intensive care settings. Although essential in many cases, mechanical ventilation can be responsible for ventilator-induced lung injury (VILI). The relationship between mechanical ventilation and VILI has been clearly demonstrated in animals and is highly suspected in humans. The putative mechanism responsible for VILI is excessive pulmonary strain or overdistension. Frequently observed in mechanically ventilated patients, the presence of a severe pre-existing pulmonary disease can increase the risk of overdistension. The development of a tool allowing early detection of pulmonary overdistension would represent a great asset in the prevention of VILI by allowing safer adjustments of mechanical ventilation parameters. Ultrasonographic imaging is a non-radiant, non-invasive technique already available in the intensive care setting. Already used for cardiac strain measurements, ultrasonography is a promising avenue to assess pulmonary strain.

This pilot study will aim to create a small dataset of local pleural strain values assessed at predetermined pulmonary areas using ultrasound imaging in patients undergoing thoracic surgery requiring one-lung ventilation. This dataset will be used to help plan larger scale studies.


Clinical Trial Description

At four different time points during thoracic surgery, images of the pleura of the dependent lung will be made at 2 predetermined areas. The images will be made: after induction (tidal volume of 10 mL/kg), during two-lung ventilation (tidal volume of 10 mL/kg) and during one-lung ventilation (tidal volume of 10 mL/kg and 5 mL/kg). The sites to be studied will be: the 3rd intercostal space at the mid-clavicular line (dependent lung), the 8th intercostal space at the posterior axillary line (dependent lung). Three consecutive respiratory cycles at each site will be recorded for subsequent analysis.

Lung ultrasonography will be performed by the principal investigator and a co-investigator using a Terason (Teratech Corporation, Burlington, MA) device and a 12L5 linear ultrasound probe. For each image, the probe will be oriented perpendicularly to the pleura with the pointer towards the participant's head. A depth of 4 cm will be used and adjusted in order to have the pleural line located between the center and the three-quarts of the screen. The beam's focal zone will be positioned at the level of the pleural line. A 12 MHz frequency will be used.

Using a reference ultrasonographic image, an experienced lung ultrasonographer will segment the pleura. From this image, an algorithm will define a region of interest which will be followed throughout the rest of the images of the video sequence. Thereafter, the algorithm will calculate the various components of pulmonary strain in relation to tidal volume. The principal investigator or a co-investigator will visually validate the speckle-tracking. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03817918
Study type Interventional
Source Centre hospitalier de l'Université de Montréal (CHUM)
Contact
Status Completed
Phase N/A
Start date March 21, 2019
Completion date May 17, 2019

See also
  Status Clinical Trial Phase
Recruiting NCT05030337 - Optimising Ventilation in Preterms With Closed-loop Oxygen Control N/A
Completed NCT05144607 - Impact of Inspiratory Muscle Pressure Curves on the Ability of Professionals to Identify Patient-ventilator Asynchronies N/A
Recruiting NCT03697785 - Weaning Algorithm for Mechanical VEntilation N/A
Completed NCT05084976 - Parental Perception of COVID-19 Vaccine in Technology Dependent Patients
Active, not recruiting NCT05886387 - a Bayesian Analysis of Three Randomised Clinical Trials of Intraoperative Ventilation
Completed NCT04429399 - Lowering PEEP: Weaning From High PEEP Setting N/A
Completed NCT02249039 - Intravenous Clonidine for Sedation in Infants and Children Who Are Mechanically Ventilated - Dosing Finding Study Phase 1
Recruiting NCT02071524 - Evaluation of the Effects of Fluid Therapy on Respiratory Mechanics N/A
Completed NCT01114022 - Prevention Inhalation of Bacterial by Using Endotracheal Tube Balloon Polyvinyl Chloride or Polyurethane N/A
Completed NCT00893763 - Strategies To Prevent Pneumonia 2 (SToPP2) Phase 2
Terminated NCT05056103 - Automated Secretion Removal in ICU Patients N/A
Active, not recruiting NCT04558476 - Efficacy of CONvalescent Plasma in Patients With COVID-19 Treated With Mechanical Ventilation Phase 2
Recruiting NCT05295186 - PAV Trial During SBT Trial
Active, not recruiting NCT05370248 - The Effect of 6 ml/kg vs 10 ml/kg Tidal Volume on Diaphragm Dysfunction in Critically Mechanically Ventilated Patient N/A
Completed NCT04589910 - Measuring Thickness of the Normal Diaphragm in Children Via Ultrasound. N/A
Completed NCT04818164 - Prone Position Improves End-Expiratory Lung Volumes in COVID-19 Acute Respiratory Distress Syndrome
Completed NCT04193254 - LPP , MP and DP:Relation With Mortality and SOFA in Mechanically Ventilated Patients in ER, Ward and ICU
Completed NCT06332768 - NIV Versus HFO Versus Standard Therapy Immediately After Weaning From Mechanical Ventilation in ARDS Patients N/A
Not yet recruiting NCT03245684 - Assisted or Controlled Ventilation in Ards (Ascovent) N/A
Not yet recruiting NCT03259854 - Non Invasive Mechanical Ventilation VERSUS Oxygen MASK N/A