Opioid Use Disorder Clinical Trial
Official title:
The Evaluation of a Real-time Natural Language Processing Decision Support Tool for Screening Opioid Misuse With Addiction Consult Intervention for Hospitalized Adults
This is a clinical study to implement and evaluate a hospital-wide, operational intervention for a real-time natural language processing (NLP)-driven clinical decision support (CDS) tool, called Substance Misuse Algorithm for Referral to Treatment Using Artificial Intelligence (SMART-AI). The SMART-AI CDS tool will be evaluated via implementation in the UW Health electronic health record (EHR). The CDS tool is meant for screening inpatient adults for opioid misuse as part of a best practice alert to nurses and providers for addiction consult service needs.
The clinical narrative in the electronic health record (EHR) carries valuable information for predictive analytics, but its free-text form is difficult to mine and analyze for clinical decision support (CDS). Large-scale clinical natural language processing (NLP) pipelines have focused on data warehouse applications for retrospective research efforts. There remains a paucity of evidence for implementing open-source NLP pipelines to provide interoperable and standardized CDS at the bedside for health operations. Enterprise Analytics and Applied Data Science at UWHealth have helped the health system grow its IT infrastructure to support a data-driven Learning Health System (LHS) capable of Artificial Intelligence (AI)-augmented decision-making at the bedside. This is a clinical study to implement and evaluate a hospital-wide, operational intervention for a real-time NLP-driven CDS tool, called Substance Misuse Algorithm for Referral to Treatment Using Artificial Intelligence (SMART-AI). The SMART-AI CDS tool will be evaluated via implementation in the UW Health electronic health record. The CDS tool is meant for screening inpatient adults for opioid misuse as part of a best practice alert to nurses and providers for addiction consult service needs. The tool is part of a quality improvement initiative with approvals from hospital committees, including the Clinical AI and Predictive Analytics Committee. The primary outcome was the percentage of inpatients who screened positive (or would have screened positive) based on the NLP CDS tool who received an addiction consult with any of the following interventions: (1) receipt of opioid use intervention or motivational interviewing (MI); (2) receipt of medication-assisted treatment (MAT); and/or (3) referral to substance use disorder treatment. The primary outcome will be reported as a percentage in the pre- and post-intervention periods and consisted of substance use screening and treatment service engagement for hospitalized patients screened for opioid misuse. Secondary outcomes included the 30-day unplanned hospital readmission rate. Criteria for unplanned hospital readmissions were adopted from the Centers for Medicare & Medicaid Services. Substance misuse is a common problem in hospitalized patients associated with poor health outcomes, but it is not prioritized and frequently unaddressed during routine care. Current approaches for screening at UW are not done and other health systems use structured diagnostic interviews that require additional staffing and effort during clinical care. Important details about substance use are captured in the clinical notes of the electronic health record but the data are difficult to mine and analyze. Natural language processing and machine learning can be trained to identify relevant findings in the notes to automatically screen patients with substance misuse. The Investigators trained a convolutional neural network to screen and identify alcohol misuse, opioid misuse, and non-opioid drug misuse with high accuracy using ICD diagnostic codes and admission notes collected during clinical care. The derived algorithm is called Substance Misuse Algorithm for Referral to Treatment Using Artificial Intelligence (SMART-AI). The screening tool uses methods in natural language processing to screen hospitalized patients to prioritize care focused on their substance misuse. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3922677 SMART AI is more accurate than traditional rule-based systems. It uses machine learning and real-time data feeds to continuously monitor the electronic health record (EHR) data and stratify hospitalized patients by risk of unhealthy substance use. UWHealth is an early adopter of Artificial Intelligence (AI)-driven clinical decision support (CDS) tools and plans to implement SMART-AI for screening unhealthy opioid use. The embedded EHR workflow also allows for an automated data transformation into our health system's data warehouse for analyzing measures to support a Plan Do Study Act (PDSA) operation, an integral component to a Learning Health System (LHS). Enterprise Analytics and Applied Data Science at UWHealth have helped the health system grow its IT infrastructure to support a data-driven LHS capable of AI-augmented decision-making at the bedside and SMART-AI is one of the first use-cases for screening using natural language processing. Aim 1: Examine the treatment effect of SMART-AI on patient health outcomes using a pragmatic clinical rollout design. Study Design: The day of switching on the SMART-AI tool will mark the start of the implementation period. The tool will be evaluated in a PDSA cycle over several months of rollout to examine the primary outcome of addiction consults. The SMART-AI study intervention sample consisted of all hospitalized patients who screened positive for opioid misuse from the NLP CDS tool. The primary effectiveness measure was the percentage of hospitalized patients in the NLP CDS intervention sample who were screened positive for opioid misuse and who received an intervention by the inpatient addiction consult service. A control sample was derived by retrospectively applying the NLP CDS tool to all inpatient EHR records for the two years before the present study initiation in March 2023. Hospitalized patients who screened positive retrospectively under the NLP CDS tool will form the usual care control group. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06021431 -
Virtual Reality Cognitive-Affective Training for Opioid Use Disorder- A Phase 2 RCT
|
N/A | |
Completed |
NCT06266572 -
Overcoming Stigma and Improving Outcomes for SUDs Through Education, Engagement, and Empowerment
|
Phase 1 | |
Recruiting |
NCT05037682 -
Pain and Opioid Management in Older Adults
|
N/A | |
Completed |
NCT06200740 -
Remotely Observed Methadone Evaluation
|
N/A | |
Not yet recruiting |
NCT06441604 -
Extended-release Buprenorphine as a Novel Low-dose Induction Strategy
|
Phase 2 | |
Recruiting |
NCT06028126 -
Superficial Parasternal Intercostal Plane Block in Cardiac Surgery Trial
|
N/A | |
Completed |
NCT02559973 -
Pharmacokinetics, Safety, and Tolerability of Depot Buprenorphine at Three Different Molecular Weights in Treatment-Seeking Subjects With Opioid Use Disorder
|
Phase 1 | |
Completed |
NCT02440256 -
Expanded HIV Care in Opioid Substitution Treatment (EHOST) Trial
|
N/A | |
Completed |
NCT02593474 -
Medication-Assisted Treatment for Youth With Substance Use Disorders
|
Phase 1 | |
Completed |
NCT05587998 -
A Study to Assess the Effect of AZD4041 on Respiratory Drive in Recreational Opioid Users.
|
Phase 1 | |
Terminated |
NCT04577144 -
An Observational Study of Environmental and Socioeconomic Factors in Opioid Recovery - Long Term
|
||
Recruiting |
NCT06001437 -
Following Outcomes Remotely Within Addiction Recovery Domains
|
||
Recruiting |
NCT05976646 -
Phase Ib/2a Drug-drug Interaction Study of a Combination of 45mg Dextromethorphan With 105 mg Bupropion
|
Phase 1/Phase 2 | |
Completed |
NCT05546229 -
Assessment of Methadone and Buprenorphine in Interstitial Fluid
|
||
Not yet recruiting |
NCT06416020 -
Integrating MOUD in African American Community Settings (Better Together)
|
N/A | |
Not yet recruiting |
NCT06104280 -
Medications for Opioid Use Disorder Photosensitive Retinal Ganglion Cell Function, Sleep, and Circadian Rhythms: Implications for Treatment
|
N/A | |
Recruiting |
NCT06206291 -
Cannabidiol for Opioid Addiction
|
Phase 2 | |
Completed |
NCT05552040 -
START NOW in the Treatment of Opioid Addicted Individuals
|
N/A | |
Recruiting |
NCT05459922 -
Adjunctive Bright Light Therapy for Opioid Use Disorder
|
N/A | |
Recruiting |
NCT05343169 -
Community-based Education, Navigation, and Support Intervention for Military Veterans
|
N/A |