Obesity Clinical Trial
— S-LITEOfficial title:
Synergy Effect of the Appetite Hormone GLP-1 (LiragluTide) and Exercise on Maintenance of Weight Loss and Health After a Low Calorie Diet - the S-LiTE Randomized Trial
Verified date | October 2020 |
Source | University of Copenhagen |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Introduction: The success rate of weight loss maintenance is limited. Therefore, the purpose of this study is to investigate the maintenance of weight loss and immunometabolic health outcomes after diet-induced weight loss followed by one-year treatment with a glucagon-like peptide-1 receptor agonist (liraglutide), physical exercise, or the combination of both treatments as compared with placebo in individuals with obesity. Methods and analysis: This is an investigator-initiated, randomized, placebo-controlled, parallel group trial. The investigators will enroll women and men (age 18 to 65 years) with obesity (body mass index 32 to 43 kg/m2) to adhere to a very low-calorie diet (800 kcal/day) for eight weeks in order to lose at least 5 % of body weight. Subsequently, participants will be randomized in a 1:1:1:1 ratio to one of four study groups for 52 weeks: 1) placebo, 2) exercise 150 min/week + placebo, 3) liraglutide 3.0 mg/day, and 4) exercise 150 min/week + liraglutide 3.0 mg/day. Re-screening is allowed within the recruitment period. The primary endpoint is change in body weight from randomization to end-of-treatment. Ethics and dissemination: The trial has been approved by the ethical committee of the Capital Region of Denmark (H-16027082) and the Danish Medicines Agency (EudraCT 2015-005585-32). The trial will be conducted in agreement with the Declaration of Helsinki and monitored to follow the guidelines for good clinical practice. Results will be submitted for publication in international peer-reviewed scientific journals.
Status | Active, not recruiting |
Enrollment | 215 |
Est. completion date | November 2021 |
Est. primary completion date | November 2019 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility | Inclusion Criteria: - BMI > 32 and < 43 (kg/m2) - Age >18 and <65 years - Safe contraceptive method Exclusion Criteria: - Patients diagnosed with known serious chronic illness including type 1 or 2 diabetes (or a randomly measured fasting plasma glucose > 7 mmol/l) - Angina pectoris, coronary heart disease, congestive heart failure (NYHA III-IV) - Severe renal impairment (creatinine clearance (GFR) <30 mL/min) - Severe hepatic impairment - Inflammatory bowel disease - Gastroparesis - Cancer - Chronic obstructive lung disease - Psychiatric disease, a history of major depressive or other severe psychiatric disorders - The use of medications that cause clinically significant weight gain or loss - Previous bariatric surgery - A history of idiopathic acute pancreatitis - A family or personal history of multiple endocrine neoplasia type 2 or familial medullary thyroid carcinoma - Osteoarthritis which is judged to be too severe to manage the exercise programme. As intended per study design the intervention will include a 5% weight loss prior to randomization, thus it is expected that possible participants with mild form of osteoarthritis will be able to manage exercise prescriptions. - Pregnancy, expecting pregnancy or breast feeding. If a study participant is in doubt whether she could be pregnant, a urine pregnancy test is performed. Females of childbearing potential who are not using adequate contraceptive methods (as required by local law or practice). Adequate contraception must be used throughout the study period and at least 65 hours after discontinuation of trial medication (65 hours corresponds to 5 times the half-life of Saxenda). Allergy to any of the ingredients/excipients. - Allergy to any of the ingredients/excipients of the study medication: liraglutide, disodium phosphate dihydrate, propylene glycol, phenol, hydrochloric acid, sodium hydroxide. - Regular exercise training at high intensity (e.g. spinning) >2 hours per week. |
Country | Name | City | State |
---|---|---|---|
Denmark | University of Copenhagen, Department of Biomedical Sciences | Copenhagen |
Lead Sponsor | Collaborator |
---|---|
Signe Torekov | Hvidovre University Hospital, Karolinska Institutet, University of Oxford |
Denmark,
Abdelaal M, le Roux CW, Docherty NG. Morbidity and mortality associated with obesity. Ann Transl Med. 2017 Apr;5(7):161. doi: 10.21037/atm.2017.03.107. Review. — View Citation
Anderson JW, Konz EC, Frederich RC, Wood CL. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr. 2001 Nov;74(5):579-84. — View Citation
Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, Fujitani Y, Hirose T, Kawamori R, Watada H. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes. 2010 Apr;59(4):1030-7. doi: 10.2337/db09-1694. Epub 2010 Jan 12. — View Citation
Barte JC, ter Bogt NC, Bogers RP, Teixeira PJ, Blissmer B, Mori TA, Bemelmans WJ. Maintenance of weight loss after lifestyle interventions for overweight and obesity, a systematic review. Obes Rev. 2010 Dec;11(12):899-906. doi: 10.1111/j.1467-789X.2010.00740.x. Review. — View Citation
Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab. 2006 Jul;291(1):E99-E107. Epub 2006 Feb 7. — View Citation
Bunck MC, Diamant M, Eliasson B, Cornér A, Shaginian RM, Heine RJ, Taskinen MR, Yki-Järvinen H, Smith U. Exenatide affects circulating cardiovascular risk biomarkers independently of changes in body composition. Diabetes Care. 2010 Aug;33(8):1734-7. doi: 10.2337/dc09-2361. Epub 2010 Apr 27. — View Citation
Calbet JAL, Ponce-González JG, Calle-Herrero J, Perez-Suarez I, Martin-Rincon M, Santana A, Morales-Alamo D, Holmberg HC. Exercise Preserves Lean Mass and Performance during Severe Energy Deficit: The Role of Exercise Volume and Dietary Protein Content. Front Physiol. 2017 Jul 24;8:483. doi: 10.3389/fphys.2017.00483. eCollection 2017. — View Citation
Chaudhuri A, Ghanim H, Vora M, Sia CL, Korzeniewski K, Dhindsa S, Makdissi A, Dandona P. Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab. 2012 Jan;97(1):198-207. doi: 10.1210/jc.2011-1508. Epub 2011 Oct 19. — View Citation
Curioni CC, Lourenço PM. Long-term weight loss after diet and exercise: a systematic review. Int J Obes (Lond). 2005 Oct;29(10):1168-74. Review. — View Citation
Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjøth TV, Andreasen AH, Jensen CB, DeFronzo RA; NN8022-1922 Study Group. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial. JAMA. 2015 Aug 18;314(7):687-99. doi: 10.1001/jama.2015.9676. Erratum in: JAMA. 2016 Jan 5;315(1):90. — View Citation
Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK; American College of Sports Medicine. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009 Feb;41(2):459-71. doi: 10.1249/MSS.0b013e3181949333. Erratum in: Med Sci Sports Exerc. 2009 Jul;41(7):1532. — View Citation
Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G; Atherosclerosis Risk in Communities Study. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003 Jul;52(7):1799-805. — View Citation
Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998 Feb 1;101(3):515-20. — View Citation
Garczorz W, Gallego-Colon E, Kosowska A, Klych-Ratuszny A, Wozniak M, Marcol W, Niesner KJ, Francuz T. Exenatide exhibits anti-inflammatory properties and modulates endothelial response to tumor necrosis factor a-mediated activation. Cardiovasc Ther. 2018 Apr;36(2). doi: 10.1111/1755-5922.12317. Epub 2018 Jan 24. — View Citation
Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, Nadolsky K, Pessah-Pollack R, Plodkowski R; Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY COMPREHENSIVE CLINICAL PRACTICE GUIDELINES FOR MEDICAL CARE OF PATIENTS WITH OBESITY. Endocr Pract. 2016 Jul;22 Suppl 3:1-203. doi: 10.4158/EP161365.GL. Epub 2016 May 24. — View Citation
Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011 Aug 5;11(9):607-15. doi: 10.1038/nri3041. — View Citation
Hogan AE, Gaoatswe G, Lynch L, Corrigan MA, Woods C, O'Connell J, O'Shea D. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia. 2014 Apr;57(4):781-4. doi: 10.1007/s00125-013-3145-0. Epub 2013 Dec 21. — View Citation
Holst JJ, Deacon CF, Vilsbøll T, Krarup T, Madsbad S. Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med. 2008 Apr;14(4):161-8. doi: 10.1016/j.molmed.2008.01.003. Epub 2008 Mar 18. Review. — View Citation
Iepsen EW, Lundgren J, Dirksen C, Jensen JE, Pedersen O, Hansen T, Madsbad S, Holst JJ, Torekov SS. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss. Int J Obes (Lond). 2015 May;39(5):834-41. doi: 10.1038/ijo.2014.177. Epub 2014 Oct 7. — View Citation
Iepsen EW, Lundgren J, Holst JJ, Madsbad S, Torekov SS. Successful weight loss maintenance includes long-term increased meal responses of GLP-1 and PYY3-36. Eur J Endocrinol. 2016 Jun;174(6):775-84. doi: 10.1530/EJE-15-1116. Epub 2016 Mar 14. — View Citation
Insuela DBR, Carvalho VF. Glucagon and glucagon-like peptide-1 as novel anti-inflammatory and immunomodulatory compounds. Eur J Pharmacol. 2017 Oct 5;812:64-72. doi: 10.1016/j.ejphar.2017.07.015. Epub 2017 Jul 6. Review. — View Citation
Jakicic JM, Marcus BH, Lang W, Janney C. Effect of exercise on 24-month weight loss maintenance in overweight women. Arch Intern Med. 2008 Jul 28;168(14):1550-9; discussion 1559-60. doi: 10.1001/archinte.168.14.1550. Erratum in: Arch Intern Med. 2008 Oct 27;168(19):2162. — View Citation
Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, Hu FB, Hubbard VS, Jakicic JM, Kushner RF, Loria CM, Millen BE, Nonas CA, Pi-Sunyer FX, Stevens J, Stevens VJ, Wadden TA, Wolfe BM, Yanovski SZ, Jordan HS, Kendall KA, Lux LJ, Mentor-Marcel R, Morgan LC, Trisolini MG, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC Jr, Tomaselli GF; American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Obesity Society. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014 Jun 24;129(25 Suppl 2):S102-38. doi: 10.1161/01.cir.0000437739.71477.ee. Epub 2013 Nov 12. Erratum in: Circulation. 2014 Jun 24;129(25 Suppl 2):S139-40. — View Citation
Kroeger CM, Hoddy KK, Varady KA. Impact of weight regain on metabolic disease risk: a review of human trials. J Obes. 2014;2014:614519. doi: 10.1155/2014/614519. Epub 2014 Aug 14. Review. — View Citation
Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee DC, Earnest CP, Church TS, O'Keefe JH, Milani RV, Blair SN. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res. 2015 Jul 3;117(2):207-19. doi: 10.1161/CIRCRESAHA.117.305205. Review. — View Citation
Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, Ha SY, Kang Y, Kim Y, Jun HS. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia. 2012 Sep;55(9):2456-68. doi: 10.1007/s00125-012-2592-3. Epub 2012 Jun 22. — View Citation
Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995 Mar 9;332(10):621-8. Erratum in: N Engl J Med 1995 Aug 10;333(6):399. — View Citation
Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, de Las Fuentes L, He S, Okunade AL, Patterson BW, Klein S. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab. 2016 Apr 12;23(4):591-601. doi: 10.1016/j.cmet.2016.02.005. Epub 2016 Feb 22. — View Citation
Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsbøll T; SUSTAIN-6 Investigators. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016 Nov 10;375(19):1834-1844. Epub 2016 Sep 15. — View Citation
Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB; LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016 Jul 28;375(4):311-22. doi: 10.1056/NEJMoa1603827. Epub 2016 Jun 13. — View Citation
Nordby P, Auerbach PL, Rosenkilde M, Kristiansen L, Thomasen JR, Rygaard L, Groth R, Brandt N, Helge JW, Richter EA, Ploug T, Stallknecht B. Endurance training per se increases metabolic health in young, moderately overweight men. Obesity (Silver Spring). 2012 Nov;20(11):2202-12. doi: 10.1038/oby.2012.70. Epub 2012 Mar 22. — View Citation
Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WS Jr, Brehm BJ, Bucher HC. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med. 2006 Feb 13;166(3):285-93. Review. Erratum in: Arch Intern Med. 2006 Apr 24;166(8):932. — View Citation
Noyan-Ashraf MH, Shikatani EA, Schuiki I, Mukovozov I, Wu J, Li RK, Volchuk A, Robinson LA, Billia F, Drucker DJ, Husain M. A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation. 2013 Jan 1;127(1):74-85. doi: 10.1161/CIRCULATIONAHA.112.091215. Epub 2012 Nov 27. — View Citation
Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i-xii, 1-253. — View Citation
Panagiotakos DB, Pitsavos C, Yannakoulia M, Chrysohoou C, Stefanadis C. The implication of obesity and central fat on markers of chronic inflammation: The ATTICA study. Atherosclerosis. 2005 Dec;183(2):308-15. Epub 2005 Apr 25. — View Citation
Pastel E, McCulloch LJ, Ward R, Joshi S, Gooding KM, Shore AC, Kos K. GLP-1 analogue-induced weight loss does not improve obesity-induced AT dysfunction. Clin Sci (Lond). 2017 Mar 1;131(5):343-353. doi: 10.1042/CS20160803. Epub 2017 Jan 3. — View Citation
Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DC, le Roux CW, Violante Ortiz R, Jensen CB, Wilding JP; SCALE Obesity and Prediabetes NN8022-1839 Study Group. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med. 2015 Jul 2;373(1):11-22. doi: 10.1056/NEJMoa1411892. — View Citation
Rosenbaum M, Leibel RL. Adaptive thermogenesis in humans. Int J Obes (Lond). 2010 Oct;34 Suppl 1:S47-55. doi: 10.1038/ijo.2010.184. Review. — View Citation
Shaw K, Gennat H, O'Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006 Oct 18;(4):CD003817. Review. — View Citation
Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 2003 May;17(8):884-6. Epub 2003 Mar 5. — View Citation
Stepien M, Stepien A, Wlazel RN, Paradowski M, Banach M, Rysz J. Obesity indices and inflammatory markers in obese non-diabetic normo- and hypertensive patients: a comparative pilot study. Lipids Health Dis. 2014 Feb 8;13:29. doi: 10.1186/1476-511X-13-29. — View Citation
Stiegler P, Cunliffe A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med. 2006;36(3):239-62. Review. — View Citation
Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014 Jan-Feb;56(4):441-7. doi: 10.1016/j.pcad.2013.09.012. Epub 2013 Oct 11. Review. — View Citation
Thomas TR, Warner SO, Dellsperger KC, Hinton PS, Whaley-Connell AT, Rector RS, Liu Y, Linden MA, Chockalingam A, Thyfault JP, Huyette DR, Wang Z, Cox RH. Exercise and the metabolic syndrome with weight regain. J Appl Physiol (1985). 2010 Jul;109(1):3-10. doi: 10.1152/japplphysiol.01361.2009. Epub 2010 Feb 18. — View Citation
Torekov SS. Glucagon-like peptide-1 receptor agonists and cardiovascular disease: from LEADER to EXSCEL. Cardiovasc Res. 2018 Aug 1;114(10):e70-e71. doi: 10.1093/cvr/cvy124. — View Citation
Trussardi Fayh AP, Lopes AL, Fernandes PR, Reischak-Oliveira A, Friedman R. Impact of weight loss with or without exercise on abdominal fat and insulin resistance in obese individuals: a randomised clinical trial. Br J Nutr. 2013 Aug 28;110(3):486-92. doi: 10.1017/S0007114512005442. Epub 2013 Jan 10. — View Citation
Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002 Feb;51(2):455-61. — View Citation
Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM, Aronne L; NN8022-1923 Investigators. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int J Obes (Lond). 2013 Nov;37(11):1443-51. doi: 10.1038/ijo.2013.120. Epub 2013 Jul 1. Erratum in: Int J Obes (Lond). 2013 Nov;37(11):1514. Int J Obes (Lond). 2015 Jan;39(1):187. — View Citation
Weiss EP, Albert SG, Reeds DN, Kress KS, McDaniel JL, Klein S, Villareal DT. Effects of matched weight loss from calorie restriction, exercise, or both on cardiovascular disease risk factors: a randomized intervention trial. Am J Clin Nutr. 2016 Sep;104(3):576-86. doi: 10.3945/ajcn.116.131391. Epub 2016 Jul 27. — View Citation
Weiss EP, Reeds DN, Ezekiel UR, Albert SG, Villareal DT. Circulating cytokines as determinants of weight loss-induced improvements in insulin sensitivity. Endocrine. 2017 Jan;55(1):153-164. doi: 10.1007/s12020-016-1093-4. Epub 2016 Sep 7. — View Citation
Wing RR, Phelan S. Long-term weight loss maintenance. Am J Clin Nutr. 2005 Jul;82(1 Suppl):222S-225S. doi: 10.1093/ajcn/82.1.222S. Review. — View Citation
You T, Arsenis NC, Disanzo BL, Lamonte MJ. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms. Sports Med. 2013 Apr;43(4):243-56. doi: 10.1007/s40279-013-0023-3. Review. — View Citation
* Note: There are 52 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Physical fitness (ml/min/min) | Measured by VO2 peak test on a bike, strength test, and functional stair test (unit: ml/min/min) | Change from baseline to end-of-treatment (52 weeks) | |
Other | Quality of life score | The Short Form 36 Health Survey, (units on a scale: 0-100). Higher scores mean a better outocome | Change from baseline to end-of-treatment (52 weeks) | |
Other | Heart rate | Heart rate (bpm) | Change from screening to baseline to end-of-treatment (52 weeks) | |
Other | Proportion of participants with % weight loss | Proportion of participants with % weight loss (%) | Change from screening to end-of-treatment (52 weeks) | |
Other | Total weight loss | Total weight loss (%) | Change from screening to end-of-treatment (52 weeks) | |
Other | Questionnaires | Scores (units on a scale) | Change from baseline to end-of-treatment (52 weeks) | |
Other | Fasting and meal-related hormonal response | Blood samples | Change from baseline to end-of-treatment (52 weeks) | |
Other | Food preferences/subjective appetite sensation | Scores | Change from baseline to end-of-treatment (52 weeks) | |
Other | Endothelial function | Measured by flow-mediated dilation (%) | Change from screening to baseline to end-of-treatment (52 weeks) | |
Other | Determination of daily physical activity/sleep | Measured by triaxial accelerometry (GENEActiv, ActivInsights Ltd, UK) (min/day). | Change from screening to baseline to end-of-treatment (52 weeks) | |
Other | Bone health (Bone mineral density) | Measured by DXA scan (g/cm^2) | Change from baseline to end-of-treatment (52 weeks) | |
Other | Systemic markers of immunometabolism | Immunometabolic composition (CRP mg/l) | Change from screening to baseline to end-of-treatment (52 weeks) | |
Other | Immunometabolic changes in the subcutaneous adipose tissue | Immunometabolic composition (gene expression) | Change from screening to baseline to end-of-treatment (52 weeks) | |
Other | Spermatozoa | Spermatozoa concentration (counts/ml) | Change from screening to baseline to end-of-treatment (52 weeks) | |
Other | Faecal bacterial composition | Microbiome composition | Change from screening to baseline to end-of-treatment (52 weeks) | |
Other | Use of medication | n, frequency | Change from screening to baseline to end-of-treatment (52 weeks) | |
Other | Follow-up visit | one-year follow-up (kg/fat%) | End-of-treatment to 1 year after intervention | |
Primary | Body weight change (kg) | Weight will be measured to the nearest 0.1 kg. The same set of scales should ideally be used throughout the trial. Weight should be measured in a fasting state without shoes and wearing light clothes. | Change from baseline to end-of-treatment (52 weeks) | |
Secondary | Body composition (fat percentage) | Dual-energy X-ray absorptiometry scans will be performed in fasting state to measure body fat percentage (%). | Change from baseline to end-of-treatment (52 weeks) | |
Secondary | Body composition (fat mass and fat free mass) | Dual-energy X-ray absorptiometry scans will be performed in fasting state to measure fat mass/fat free mass (kg). | Change from baseline to end-of-treatment (52 weeks) | |
Secondary | Waist and hip circumference | Waist circumference, the midpoint between lowest rib and iliac crest, and hip circumference, the level of the great trochanters, will be measured in duplicate to the nearest 0.1 cm after gentle expiration. | Change from baseline to end-of-treatment (52 weeks) | |
Secondary | HOMA-IR | Fasting insulin (µU/mL) * fasting glucose (mmol/L) / 22.5 | Change from baseline to end-of-treatment (52 weeks) | |
Secondary | Matsuda Index | 10000/sqrt(fasting glucose * fasting insulin * mean glucose * mean insulin) | Change from baseline to end-of-treatment (52 weeks) | |
Secondary | Hormonal regulation of blood glucose | Measured from blood samples (e.g. glucose tolerance, HbA1c (mmol/mol)) | Change from baseline to end-of-treatment (52 weeks) | |
Secondary | Lipids | Measured from blood samples (e.g. cholesterol (HDL, LDL, VLDL) and triglycerides (TG)) (mmol/L) | Change from baseline to end-of-treatment (52 weeks) | |
Secondary | Blood pressure | Blood pressure (systolic/diastolic) will be measured in duplicate from the non-dominant arm with a digital blood pressure monitor in sitting position after at least 5 min of rest (mmHg). | Change from baseline to end-of-treatment (52 weeks) | |
Secondary | Metabolic Syndrome (yes/no) | Relevant clinical parameters lipids, fasting glucose, waist circumference, and blood pressure will be used to investigate whether the participants have metabolic syndrome (unit: yes/no). | Change from baseline to end-of-treatment (52 weeks) | |
Secondary | MetS (z-score) | Relevant clinical parameters lipids, fasting glucose, waist circumference, and blood pressure will be used to calculate a z-score (unit: z-score) | Change from baseline to end-of-treatment (52 weeks) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04243317 -
Feasibility of a Sleep Improvement Intervention for Weight Loss and Its Maintenance in Sleep Impaired Obese Adults
|
N/A | |
Recruiting |
NCT04101669 -
EndoBarrier System Pivotal Trial(Rev E v2)
|
N/A | |
Terminated |
NCT03772886 -
Reducing Cesarean Delivery Rate in Obese Patients Using the Peanut Ball
|
N/A | |
Completed |
NCT03640442 -
Modified Ramped Position for Intubation of Obese Females.
|
N/A | |
Completed |
NCT04506996 -
Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2
|
N/A | |
Recruiting |
NCT06019832 -
Analysis of Stem and Non-Stem Tibial Component
|
N/A | |
Active, not recruiting |
NCT05891834 -
Study of INV-202 in Patients With Obesity and Metabolic Syndrome
|
Phase 2 | |
Active, not recruiting |
NCT05275959 -
Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI)
|
N/A | |
Recruiting |
NCT04575194 -
Study of the Cardiometabolic Effects of Obesity Pharmacotherapy
|
Phase 4 | |
Completed |
NCT04513769 -
Nutritious Eating With Soul at Rare Variety Cafe
|
N/A | |
Withdrawn |
NCT03042897 -
Exercise and Diet Intervention in Promoting Weight Loss in Obese Patients With Stage I Endometrial Cancer
|
N/A | |
Completed |
NCT03644524 -
Heat Therapy and Cardiometabolic Health in Obese Women
|
N/A | |
Recruiting |
NCT05917873 -
Metabolic Effects of Four-week Lactate-ketone Ester Supplementation
|
N/A | |
Active, not recruiting |
NCT04353258 -
Research Intervention to Support Healthy Eating and Exercise
|
N/A | |
Completed |
NCT04507867 -
Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III
|
N/A | |
Recruiting |
NCT03227575 -
Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control
|
N/A | |
Completed |
NCT01870947 -
Assisted Exercise in Obese Endometrial Cancer Patients
|
N/A | |
Recruiting |
NCT06007404 -
Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
|
||
Recruiting |
NCT05972564 -
The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function
|
Phase 1/Phase 2 | |
Recruiting |
NCT05371496 -
Cardiac and Metabolic Effects of Semaglutide in Heart Failure With Preserved Ejection Fraction
|
Phase 2 |