Obesity Clinical Trial
Official title:
Effect of Body Weight Loading on Urinary Electrolyte Excretion
Title: Effect of body weight loading on urinary electrolyte excretion
Swedish Title: Effekt av belastning på utsöndring av elektrolyter
Study period: Q2-Q3 2017
Study site: The study will be performed at the Institution for Neurology and Physiology,
Sahlgrenska Academy, University of Gothenburg. Principal Investigator is John-Olov Jansson,
MD, PhD, Professor at Institute of Neuroscience and Physiology, University of Gothenburg
Background and study design: Weight reduction can be obtained by decreased appetite or
increased metabolism. However, acute weight loss can also be obtained by loss of fluids - for
example by increased urinary loss of fluid and salts, so called elctrolytes. Preliminary
results from a laboratory lesson for the Master of Science in Medicine program at University
of Gothenburg suggest that carrying a 10 kg weight vest could increase urinary excretion of
Na+, K+ and Cl-. The purpose of this study is to investigate this further in a more
controlled research setting. If confirmed, the results could potentially contribute to the
development of potent diuretics or obesity medicines.
The study will include 15 healthy volunteers and consist of three study days with about one
week between each study day. The study subjects will go through a different study procedure
each study day, and a randomized cross-over study design will be used to determine which
procedure each day.
Procedure 1: Wearing a weight vest with 10 % of body weight standing for seven hours. The
study subject is allowed to sit for 10 minutes each hour. The reason for this is that it has
been considered that the effect may be transmitted by weight loading of the lower
extremities.
Procedure 2: Wearing a weight vest with 1 % of body weight standing for seven hours, as a
control for procedure 1, with lower loading. The study subject is allowed to sit for 10
minutes each hour.
Procedure 3: Wearing a weight vest with 1 % of body weight sitting for seven hours. This is a
procedure with even less loading of the lower extremities than during procedure 2.
Urine- and blood samples, as well as heart rate and blood pressure measurements, will be
collected during the study days and analyzed in order to address the primary and secondary
objectives of the study.
1. INTRODUCTION
1.1. Background
Weight reduction can be obtained by decreased appetite or increased metabolism. However,
acute weight loss can also be obtained by loss of fluids - for example, urinary loss.
The last of these effects was investigated during 2016.
The medical education at The Sahlgrenska Academy in Gothenburg offers in its third
semester a student lab called "Vattenbalans" [=Water balance]. The purpose of this lab
is to study fluid loss by the kidneys. In total more than 120 students participate,
although the urine flow rate is only measured on approximately 50 students each
semester. The rest of the students function as secretaries. The lab protocol can be
found in "Komplett-laborationskompendium-T2-T3-uppdaterat-150318" pp. 123-134.
In summary a total of 50 students wore a weight west. Half of the students wore a 10 kg
weight vest and half of the students wore a 1 kg weight vest. The study lasted for four
hours. The students were only allowed to sit a maximum of 10 minutes during each hour.
No significant difference was observed in urine flow rate. Surprisingly however, the
investigators found that the students who wore a 10 kg weight vest excreted more
electrolytes than those wearing a 1 kg weight vest. In the group free from treatment
(see below) only consisted of 13 subjects and the investigators were therefore not able
to obtain significant results (p=0,088). The investigators believe that with a larger
study population and better matched controls the investigators will reach significant
results.
It shall be noted that these results were obtained during a student lab with a fixed
protocol. In addition to wearing a weight vest the students also received one of the
following treatments: one liter of water orally, one liter of water orally and oral
administration of a vasopressin analogue called Minirin© (desmopressin, 60 µg), a loop
diuretic called Furix© (furosemide, 40 mg) or one liter water orally and eight tablets
of Resorb© which is a rehydration therapy. The multiple treatments and the fixed
protocol are confounders and support the repetition of these experiments with a more
suitable design.
1.2. Rationale for conducting this study
The medical relevance of these experimental results is still unclear because of the
short duration of four hours. With more experimental support, it is possible that this
strategy could be used to create potent diuretics. It is also possible that long-term
body weight loading could decrease body weight in a different way, especially by
decreasing fat mass. This mechanism could therefore be used to create potent drugs for
obesity.
1.3. Risk/Benefit evaluation
In general this is a study with few risks. The weight vests used in this experiment are
in daily use by thousands of people during exercise . During the experiment with medical
students only one of the students experienced an adverse event. This student experienced
mild dizziness which subsided within a few minutes after removing the weight vest and
sitting down. To further minimize the risks in our future study the investigatorshave
decided to include only healthy research subjects consuming no medications. The
investigators will also have medically trained personnel available during the study and
perform it in close vicinity to the Sahlgrenska University Hospital.
Blood sampling can be experienced as somewhat uncomfortable by a few individuals.
However it is generally free from complications. In some subjects, there may be small
local bruising or inflammation.
In summary the investigators believe the risks to be very low compared to the potential
of exploring a new physiological mechanism with potentially important applications such
as new diuretics or anti-obesity medicine.
2. STUDY DESIGN AND PROCEDURES
The study is executed with all 15 study subjects over three study days with one week between
each study day. In order to decrease the variation of the measurement values and increase the
power of the study cross-over study design will be used. The study subjects will on one of
the days wear a weight vest with 10 % of body weight in the standing position, on one of the
days the same study subject will wear a weight vest with 1 % of body weight in the standing
position and on one of the days the same study subject will wear a weight vest with 1 % of
body weight in the sitting position.
Hence, three procedures are included in the study. Each of the procedure corresponds to a
separate day.
Procedure 1: Wearing a weight vest with 10 % of body weight standing for seven hours. The
study subject is allowed to sit for 10 minutes each hour. The reason for this is because it
has been considered that the effect may be transmitted by weight loading of the lower
extremities.
Procedure 2: Wearing a weight vest with 1 % of body weight standing for seven hours. The
study subject is allowed to sit for 10 minutes each hour.
Procedure 3: Wearing a weight vest with 1 % of body weight sitting for seven hours. This is a
control group without loading of the lower extremities. This is also the normal working
position for many sedentary jobs (e.g. office workers) and why this is of special interest
for further investigation. There is a large body of investigative literature showing the
negative health consequences of the sitting working position.
Blood drawing will be performed with a peripheral venous catheter of the smallest size.
Furthermore there will be several steps each day which will be uniform for each of the
procedures.
Time point 1 (0 h): "Oral water load"
The catheter will be placed by an experienced nurse from Gothia Forum and is removed seven
hours later when the procedure day is finished. Study proceedings and record keeping will be
told to the research subject before the experiment officially starts.
Just before the experiment starts the study subject will drink 5 ml of water per kg body
weight. For example, if the study subject weighs 70 kg (no weight vest), he or she will drink
350 ml of water.
To maintain a normal hydration level and urine production the study subject will continue to
replace with fluids during the experiment. The volume of fluids that will be replaced will be
equal to the amount of lost urine volume. If for example the study subject loses 100 ml urine
he or she will drink of 100 ml water before continuing the experiment. By this method a urine
production of approximately 200 ml per hour is maintained which is more than enough to
perform all the required urine measurements.
This approach mimics physiological conditions wherein urinary losses are matched by water
intake. It will avoid water intake in excess of replacement amounts which, in some
circumstances, is viewed as treatment.
It is then decided by dice throw if a study subject will start with procedure 1, 2 or 3. When
two of the procedure groups are full, with five individuals in each of them, the rest is
transferred to the last procedure group. Rotation between the procedures occurs in random.
Each study subject will have one week between performing each procedure.
The study subjects will empty their urine bladder just before the study starts. The study
subjects start with five minutes separation to avoid congestioin to the toilets. The study
starts when a study subject put on a weight vest.
Time Point 2 (0-7 h): Measurements and blood drawing
This time period consists of the part from when the study subject puts on the weight vest
until the he or she takes it off.
The study subject shall each hour collect his or her urine volume in a specially designated
measurement cup. The Urine Volume is noted. 10 ml of the urine are then used to measure the
electrolyte concentration. Another 10 ml of urine is saved for further analyses at the
Sahlgrenska University central lab. These analyses are routine but samples may be stored for
a few days before the measurement takes place. This depends on when the central lab can
accept our samples and on their specific working load. Sample storage and handling will be
performed according to the central lab recommendations. The samples will at maximum be frozen
down once at a temperature of -80°C.
When the urine measurements are complete the study subject will have five minutes to relax
before measuring his or her heart rate and blood pressure. Heart rate and blood pressure are
both measured standing and sitting with digital blood pressure monitors for quick and
reliable values.
Blood will be drawn four times. The samples will be analyzed as soon as possible after each
procedure day. Some analyses will be at the Sahlgrenska Academy directly, others will be
delivered to Sahlgrenska University central lab (please see section 6.1 for details). These
analyses are routine but samples may be stored for a few days before the measurement takes
place. This depends on when the central lab can accept our samples and on their specific
working load. Sample storage and handling will be performed according to the central labs
recommendations.
Time point 3 (7 h -): The experiment is finished
Weight vest and peripheral venous catheter are removed. A procedure protocol is handed in
from the study subject to the investigator who confirms its completeness. . The procedure
protocol is either handed in digitally by uploading an excel file or handed in printed out.
;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04243317 -
Feasibility of a Sleep Improvement Intervention for Weight Loss and Its Maintenance in Sleep Impaired Obese Adults
|
N/A | |
Recruiting |
NCT04101669 -
EndoBarrier System Pivotal Trial(Rev E v2)
|
N/A | |
Terminated |
NCT03772886 -
Reducing Cesarean Delivery Rate in Obese Patients Using the Peanut Ball
|
N/A | |
Completed |
NCT03640442 -
Modified Ramped Position for Intubation of Obese Females.
|
N/A | |
Completed |
NCT04506996 -
Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2
|
N/A | |
Recruiting |
NCT06019832 -
Analysis of Stem and Non-Stem Tibial Component
|
N/A | |
Active, not recruiting |
NCT05891834 -
Study of INV-202 in Patients With Obesity and Metabolic Syndrome
|
Phase 2 | |
Active, not recruiting |
NCT05275959 -
Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI)
|
N/A | |
Recruiting |
NCT04575194 -
Study of the Cardiometabolic Effects of Obesity Pharmacotherapy
|
Phase 4 | |
Completed |
NCT04513769 -
Nutritious Eating With Soul at Rare Variety Cafe
|
N/A | |
Withdrawn |
NCT03042897 -
Exercise and Diet Intervention in Promoting Weight Loss in Obese Patients With Stage I Endometrial Cancer
|
N/A | |
Completed |
NCT03644524 -
Heat Therapy and Cardiometabolic Health in Obese Women
|
N/A | |
Recruiting |
NCT05917873 -
Metabolic Effects of Four-week Lactate-ketone Ester Supplementation
|
N/A | |
Active, not recruiting |
NCT04353258 -
Research Intervention to Support Healthy Eating and Exercise
|
N/A | |
Completed |
NCT04507867 -
Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III
|
N/A | |
Recruiting |
NCT03227575 -
Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control
|
N/A | |
Completed |
NCT01870947 -
Assisted Exercise in Obese Endometrial Cancer Patients
|
N/A | |
Recruiting |
NCT05972564 -
The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function
|
Phase 1/Phase 2 | |
Recruiting |
NCT06007404 -
Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
|
||
Recruiting |
NCT05371496 -
Cardiac and Metabolic Effects of Semaglutide in Heart Failure With Preserved Ejection Fraction
|
Phase 2 |