Clinical Trials Logo

Clinical Trial Summary

Neuroendocrine tumors (NETs) are rare neoplasms arising from the diffuse endocrine system and spreading throughout the different organs and tissues of the body. Tumor-induced osteomalacia (TIO) , is a rare, serious paraneoplastic syndrome primarily derived from a benign tumor of mesenchymal tissue. NETs and mesenchymal tumors are often insidious and are undetectable by conventional imaging techniques including ultrasound, computed tomography and magnetic resonance, while a permanent cure will rely on exact localization and completely removal of the tumor. Positron emission tomography (PET) provides a valuable tool for the diagnosis and differential diagnosis, staging, efficacy evaluation and recurrence monitoring of various tumors. NETs and mesenchymal tumors overexpress somatostatin receptors (SSTRs), so molecular imaging using radiolabeled somatostatin analogues may be one of the best ways to detect the occult tumors. Recently, somatostatin analogue labelled with gallium-68 (68Ga-DOTA-TATE) as a novel positron tracer has shown to be effective for the detection of NETs and mesenchymal tumors. In this prospective study, the investigators will use the most advanced imaging equipment, integrated PET/MR,and PET / CT with specific imaging agent 68Ga-DOTA-TATE and conventional imaging agent [F-18]fluorodeoxyglucose to image patients suspected or confirmed NETs and TIO, the aim is to explore the value of hybrid PET/MR and PET/CT in neuroendocrine diseases and TIO.


Clinical Trial Description

Neuroendocrine tumors (NETs) are rare neoplasms arising from the diffuse endocrine system and spreading throughout the different organs and tissues of the body. Tumor-induced osteomalacia (TIO), is a rare, serious paraneoplastic syndrome primarily derived from a benign tumor of mesenchymal tissue. NETs and mesenchymal tumors are often insidious and are undetectable by conventional imaging techniques including ultrasound, computed tomography and magnetic resonance, while a permanent cure will rely on exact localization and completely removal of the tumor. Positron emission tomography (PET) provides a valuable tool for the diagnosis and differential diagnosis, staging, efficacy evaluation and recurrence monitoring of various tumors. NETs and mesenchymal tumors overexpress somatostatin receptors (SSTRs), so molecular imaging using radiolabeled somatostatin analogues may be one of the best ways to detect the occult tumors. Recently, somatostatin analogue labelled with gallium-68 (68Ga-DOTA-TATE) as a novel positron tracer has shown to be effective for the detection of NETs and mesenchymal tumors. In this prospective study, the investigators will use the most advanced imaging equipment, integrated PET/MR,and PET / CT with specific imaging agent 68Ga-DOTA-TATE and conventional imaging agent [F-18] fluorodeoxyglucose to image patients. For patients suspected of or diagnosed with NETs and TIO, the investigators aim to evaluate the roles of integrated PET/MR and PET/CT in differential diagnosis, detecting primary and metastatic lesions, guilding biopsy, staging and determining treatment plan prior to treatment; for patients with a history of NETs and TIO, the aim is to evaluate the value of integrated PET/MR and PET/CT for treatment response assessment, detection of recurrences and metastatic lesions; for patients with inoperable and metastatic NETs, the aim is to find the value of integrated PET/MR and PET/CT in assessing the expression level of SSTRs to guide peptide receptor radionuclide therapy. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04045834
Study type Observational
Source Wuhan Union Hospital, China
Contact Xiaoli Lan, PhD
Phone 86-027-83692633
Email lxl730724@hotmail.com
Status Recruiting
Phase
Start date May 5, 2019
Completion date December 31, 2023

See also
  Status Clinical Trial Phase
Completed NCT01218555 - Study of Everolimus (RAD001) in Combination With Lenalidomide Phase 1
Recruiting NCT03412877 - Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People With Metastatic Cancer Phase 2
Recruiting NCT04614766 - A Clinical Trial Evaluating the Safety of Combining Lutathera(R) and Azedra(R) to Treat Mid-gut Neuroendocrine Tumors Phase 1/Phase 2
Recruiting NCT05556473 - F-Tryptophan PET/CT in Human Cancers Phase 1
Completed NCT03273712 - Dosimetry-Guided, Peptide Receptor Radiotherapy (PRRT) With 90Y-DOTA- tyr3-Octreotide (90Y-DOTATOC) Phase 2
Recruiting NCT05636618 - Targeted Alpha-Particle Therapy for Advanced SSTR2 Positive Neuroendocrine Tumors Phase 1/Phase 2
Terminated NCT03986593 - Cryoablation of Bone Metastases From Endocrine Tumors N/A
Recruiting NCT04584008 - Targeted Agent Evaluation in Digestive Cancers in China Based on Molecular Characteristics N/A
Completed NCT02815969 - The Indol Profile; Exploring the Metabolic Profile of Neuroendocrine Tumors
Completed NCT02441062 - Impact of Ga-68 DOTATOC PET-CT Imaging in Management of Neuroendocrine Tumors Phase 2
Active, not recruiting NCT02174549 - Dose-defining Study of Tirapazamine Combined With Embolization in Liver Cancer Phase 1/Phase 2
Completed NCT02132468 - A Ph 2 Study of Fosbretabulin in Subjects w Pancreatic or Gastrointestinal Neuroendocrine Tumors w Elevated Biomarkers Phase 2
Completed NCT02134639 - PET-CT Imaging of Neuro-endocrine Tumors and Preliminary Clinical Evaluation N/A
Recruiting NCT01201096 - Neo-adjuvant Peptide Receptor Mediated Radiotherapy With 177Lutetium in Front of Curative Intended Liver Transplantation in Patients With Hepatic Metastasis of Neuroendocrine Tumors (NEO-LEBE) N/A
Terminated NCT01163526 - Perfusion CT as a Predictor of Treatment Response in Patients With Hepatic Malignancies N/A
Completed NCT01099228 - Combination Targeted Radiotherapy in Neuroendocrine Tumors N/A
Completed NCT00171873 - Antiproliferative Effect of Octreotide in Patients With Metastasized Neuroendocrine Tumors of the Midgut Phase 3
Active, not recruiting NCT05077384 - Open-label Study of Surufatinib in Japanese Patients Phase 1/Phase 2
Recruiting NCT04544098 - Lutathera in People With Gastroenteropancreatic (GEP), Bronchial or Unknown Primary Neuroendocrine Tumors That Have Spread to the Liver Early Phase 1
Active, not recruiting NCT02736500 - Peptide Receptor Radionuclide Therapy With 177Lu-Dotatate Associated With Metronomic Capecitabine In Patients Affected By Aggressive Gastro-Etero-Pancreatic Neuroendocrine Tumors Phase 1/Phase 2