Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02973204
Other study ID # SK-HCC-NET
Secondary ID
Status Completed
Phase
First received
Last updated
Start date November 2016
Est. completion date January 8, 2020

Study information

Verified date November 2016
Source University of Aarhus
Contact n/a
Is FDA regulated No
Health authority
Study type Observational [Patient Registry]

Clinical Trial Summary

Background Treatment and control of cancer is associated with high costs, to patients in the form of side effects and discomfort during investigations, to society in the form of expensive drugs and studies. Circulating tumor cells (CTC) has received great attention as a cancer biomarker in trying to estimate future course in patients with breast cancer, colon cancer and prostate cancer. CTC is believed to be a crucial step in cancer spreading to the bloodstream and giving rise to metastases. Detection of circulating tumor DNA (ctDNA) specifically adds specificity to the analysis of the CTC. The investigators would like to with molecular biological methods predict which patients requires special monitoring and individualized therapy and explore these tests as clinical decision support. Purpose and method In a blood sample from patients with neuro-endocrine tumor (NET) and hepatocellular carcinoma (HCC), the investigators will by cell separation, flow cytometry and DNA sequencing and digital polymerase chain reaction (PCR): 1. Identify and isolate the CTC and investigate these for tumor-specific mutations. 2. Quantify ctDNA and analyze this for specific mutations, which in the past has been found frequent in NET and HCC. 3. Compare findings of mutations on CTC and ctDNA with mutations in tissue biopsies. The results are compared with the clinical data on disease course, including the effect of treatment and survival. Subjects 40 Patients with small intestinal/unknown primary NET before treatment with somatostatin analogues 30 patients with pancreatic NET before treatment with Everolimus 30 patients with presumed radically treated HCC 30 patients with HCC in treatment with Sorafenib A blood sample will be taken prior to the start of treatment, after 1 month after start of treatment and thereafter every 3.-6. month for up to two years. Perspectives In several cancer types molecular diagnostics have had significant influence in treatment and control strategy. The goal is in future to be able to take advantage of a so-called "liquid biopsy" as clinical decision support. The study will bring new knowledge to this growing field of research.


Recruitment information / eligibility

Status Completed
Enrollment 167
Est. completion date January 8, 2020
Est. primary completion date January 8, 2020
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - one of the above mentioned diseases - planed surgery, RFA, Somatostatin Analogue, Sorafenib or Everolimus treatment - signed informed consent Exclusion Criteria: - age below 18, concomitant invasive cancer (not skin cancer) and planed emigration of Denmark.

Study Design


Intervention

Drug:
Sorafenib

Procedure:
Radiofrequency ablation (RFA) or surgery
Intended curative surgery or RFA
Drug:
Everolimus

Lanreotide
Or other somatostatin analogues (SSTA), eg. Sandostatin

Locations

Country Name City State
Denmark Department of Hepatology and Gastroenterology Aarhus Aarhus C

Sponsors (2)

Lead Sponsor Collaborator
University of Aarhus Aarhus University Hospital

Country where clinical trial is conducted

Denmark, 

References & Publications (16)

Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011 Mar;53(3):1020-2. doi: 10.1002/hep.24199. — View Citation

Francis JM, Kiezun A, Ramos AH, Serra S, Pedamallu CS, Qian ZR, Banck MS, Kanwar R, Kulkarni AA, Karpathakis A, Manzo V, Contractor T, Philips J, Nickerson E, Pho N, Hooshmand SM, Brais LK, Lawrence MS, Pugh T, McKenna A, Sivachenko A, Cibulskis K, Carter SL, Ojesina AI, Freeman S, Jones RT, Voet D, Saksena G, Auclair D, Onofrio R, Shefler E, Sougnez C, Grimsby J, Green L, Lennon N, Meyer T, Caplin M, Chung DC, Beutler AS, Ogino S, Thirlwell C, Shivdasani R, Asa SL, Harris CR, Getz G, Kulke M, Meyerson M. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet. 2013 Dec;45(12):1483-6. doi: 10.1038/ng.2821. Epub 2013 Nov 3. — View Citation

Guo W, Yang XR, Sun YF, Shen MN, Ma XL, Wu J, Zhang CY, Zhou Y, Xu Y, Hu B, Zhang X, Zhou J, Fan J. Clinical significance of EpCAM mRNA-positive circulating tumor cells in hepatocellular carcinoma by an optimized negative enrichment and qRT-PCR-based platform. Clin Cancer Res. 2014 Sep 15;20(18):4794-805. doi: 10.1158/1078-0432.CCR-14-0251. Epub 2014 Jul 9. — View Citation

Janson ET, Sorbye H, Welin S, Federspiel B, Grønbæk H, Hellman P, Ladekarl M, Langer SW, Mortensen J, Schalin-Jäntti C, Sundin A, Sundlöv A, Thiis-Evensen E, Knigge U. Nordic guidelines 2014 for diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. Acta Oncol. 2014 Oct;53(10):1284-97. doi: 10.3109/0284186X.2014.941999. Epub 2014 Aug 20. Review. — View Citation

Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, Velculescu VE, Diaz LA Jr, Vogelstein B, Kinzler KW, Hruban RH, Papadopoulos N. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011 Mar 4;331(6021):1199-203. doi: 10.1126/science.1200609. Epub 2011 Jan 20. — View Citation

Khan MS, Kirkwood A, Tsigani T, Garcia-Hernandez J, Hartley JA, Caplin ME, Meyer T. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J Clin Oncol. 2013 Jan 20;31(3):365-72. doi: 10.1200/JCO.2012.44.2905. Epub 2012 Dec 17. — View Citation

Khan MS, Tsigani T, Rashid M, Rabouhans JS, Yu D, Luong TV, Caplin M, Meyer T. Circulating tumor cells and EpCAM expression in neuroendocrine tumors. Clin Cancer Res. 2011 Jan 15;17(2):337-45. doi: 10.1158/1078-0432.CCR-10-1776. Epub 2011 Jan 11. — View Citation

Marinoni I, Kurrer AS, Vassella E, Dettmer M, Rudolph T, Banz V, Hunger F, Pasquinelli S, Speel EJ, Perren A. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology. 2014 Feb;146(2):453-60.e5. doi: 10.1053/j.gastro.2013.10.020. Epub 2013 Oct 19. — View Citation

Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW Jr, Alizadeh AA, Diehn M. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014 May;20(5):548-54. doi: 10.1038/nm.3519. Epub 2014 Apr 6. — View Citation

Neychev V, Steinberg SM, Cottle-Delisle C, Merkel R, Nilubol N, Yao J, Meltzer P, Pacak K, Marx S, Kebebew E. Mutation-targeted therapy with sunitinib or everolimus in patients with advanced low-grade or intermediate-grade neuroendocrine tumours of the gastrointestinal tract and pancreas with or without cytoreductive surgery: protocol for a phase II clinical trial. BMJ Open. 2015 May 19;5(5):e008248. doi: 10.1136/bmjopen-2015-008248. — View Citation

Pipinikas CP, Dibra H, Karpathakis A, Feber A, Novelli M, Oukrif D, Fusai G, Valente R, Caplin M, Meyer T, Teschendorff A, Bell C, Morris TJ, Salomoni P, Luong TV, Davidson B, Beck S, Thirlwell C. Epigenetic dysregulation and poorer prognosis in DAXX-deficient pancreatic neuroendocrine tumours. Endocr Relat Cancer. 2015 Jun;22(3):L13-8. doi: 10.1530/ERC-15-0108. Epub 2015 Apr 21. — View Citation

Rimassa L, Santoro A. Sorafenib therapy in advanced hepatocellular carcinoma: the SHARP trial. Expert Rev Anticancer Ther. 2009 Jun;9(6):739-45. doi: 10.1586/era.09.41. — View Citation

Schulze K, Gasch C, Staufer K, Nashan B, Lohse AW, Pantel K, Riethdorf S, Wege H. Presence of EpCAM-positive circulating tumor cells as biomarker for systemic disease strongly correlates to survival in patients with hepatocellular carcinoma. Int J Cancer. 2013 Nov;133(9):2165-71. doi: 10.1002/ijc.28230. Epub 2013 Jun 11. — View Citation

Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Rebouissou S, Couchy G, Meiller C, Shinde J, Soysouvanh F, Calatayud AL, Pinyol R, Pelletier L, Balabaud C, Laurent A, Blanc JF, Mazzaferro V, Calvo F, Villanueva A, Nault JC, Bioulac-Sage P, Stratton MR, Llovet JM, Zucman-Rossi J. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015 May;47(5):505-511. doi: 10.1038/ng.3252. Epub 2015 Mar 30. — View Citation

Sorensen BS, Wu L, Wei W, Tsai J, Weber B, Nexo E, Meldgaard P. Monitoring of epidermal growth factor receptor tyrosine kinase inhibitor-sensitizing and resistance mutations in the plasma DNA of patients with advanced non-small cell lung cancer during treatment with erlotinib. Cancer. 2014 Dec 15;120(24):3896-901. doi: 10.1002/cncr.28964. Epub 2014 Aug 7. — View Citation

Zhang Y, Li J, Cao L, Xu W, Yin Z. Circulating tumor cells in hepatocellular carcinoma: detection techniques, clinical implications, and future perspectives. Semin Oncol. 2012 Aug;39(4):449-60. doi: 10.1053/j.seminoncol.2012.05.012. Review. — View Citation

* Note: There are 16 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Concordance between specific DNA mutations found in patient biopsies and plasma circulating tumor DNA Methods: digital droplet PCR and targeted sequencing of blood samples and biopsies 2 months
Secondary Flow cytometry for detection and quantification of CTC in peripheral blood (absolute and relative counts) 3 years
Secondary Correlations between mutations found in circulating tumor DNA and amount of circulating tumor cells and treatment response according to RECIST criteria Methods: digital droplet PCR and targeted sequencing of blood samples, and flowcytometry and cell separation of blood samples up to 5 years
Secondary Correlations between mutations found in circulating tumor DNA and amount of circulating tumor cells and survival Methods: digital droplet PCR and targeted sequencing of blood samples, and flowcytometry and cell separation of blood samples up to 5 years
Secondary Correlations between mutations fund in circulating DNA and circulating tumor cells Methods: digital droplet PCR and targeted sequencing of blood samples, and flowcytometry and cell separation of blood samples 3 years
See also
  Status Clinical Trial Phase
Completed NCT01218555 - Study of Everolimus (RAD001) in Combination With Lenalidomide Phase 1
Recruiting NCT03412877 - Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People With Metastatic Cancer Phase 2
Withdrawn NCT04614766 - A Clinical Trial Evaluating the Safety of Combining Lutathera(R) and Azedra(R) to Treat Mid-gut Neuroendocrine Tumors Phase 1/Phase 2
Recruiting NCT05556473 - F-Tryptophan PET/CT in Human Cancers Phase 1
Completed NCT03273712 - Dosimetry-Guided, Peptide Receptor Radiotherapy (PRRT) With 90Y-DOTA- tyr3-Octreotide (90Y-DOTATOC) Phase 2
Recruiting NCT05636618 - Targeted Alpha-Particle Therapy for Advanced SSTR2 Positive Neuroendocrine Tumors Phase 1/Phase 2
Terminated NCT03986593 - Cryoablation of Bone Metastases From Endocrine Tumors N/A
Recruiting NCT04584008 - Targeted Agent Evaluation in Digestive Cancers in China Based on Molecular Characteristics N/A
Completed NCT02815969 - The Indol Profile; Exploring the Metabolic Profile of Neuroendocrine Tumors
Completed NCT02441062 - Impact of Ga-68 DOTATOC PET-CT Imaging in Management of Neuroendocrine Tumors Phase 2
Active, not recruiting NCT02174549 - Dose-defining Study of Tirapazamine Combined With Embolization in Liver Cancer Phase 1/Phase 2
Completed NCT02134639 - PET-CT Imaging of Neuro-endocrine Tumors and Preliminary Clinical Evaluation N/A
Completed NCT02132468 - A Ph 2 Study of Fosbretabulin in Subjects w Pancreatic or Gastrointestinal Neuroendocrine Tumors w Elevated Biomarkers Phase 2
Recruiting NCT01201096 - Neo-adjuvant Peptide Receptor Mediated Radiotherapy With 177Lutetium in Front of Curative Intended Liver Transplantation in Patients With Hepatic Metastasis of Neuroendocrine Tumors (NEO-LEBE) N/A
Terminated NCT01163526 - Perfusion CT as a Predictor of Treatment Response in Patients With Hepatic Malignancies N/A
Completed NCT01099228 - Combination Targeted Radiotherapy in Neuroendocrine Tumors N/A
Completed NCT00171873 - Antiproliferative Effect of Octreotide in Patients With Metastasized Neuroendocrine Tumors of the Midgut Phase 3
Active, not recruiting NCT05077384 - Open-label Study of Surufatinib in Japanese Patients Phase 1/Phase 2
Recruiting NCT04544098 - Lutathera in People With Gastroenteropancreatic (GEP), Bronchial or Unknown Primary Neuroendocrine Tumors That Have Spread to the Liver Early Phase 1
Active, not recruiting NCT02736500 - Peptide Receptor Radionuclide Therapy With 177Lu-Dotatate Associated With Metronomic Capecitabine In Patients Affected By Aggressive Gastro-Etero-Pancreatic Neuroendocrine Tumors Phase 1/Phase 2