Clinical Trials Logo

Clinical Trial Summary

This study will characterize intramuscular molecular mechanisms underlying anabolic resistance to protein ingestion during muscle disuse. Adults (n=12) will be studied using a unilateral leg immobilization model in which one leg will be randomly assigned to immobilization and the contralateral, active leg used as a within-subjects control. Immobilization will be implemented for five days using a rigid knee brace, during which time participants will ambulate using crutches. Integrated ribonucleic acid (RNA) synthesis will be determined during immobilization in the immobilized and non-immobilized legs using ingested deuterium oxide, salivary and blood sampling, and muscle biopsies. Immediately after immobilization, muscle biopsies will be collected before and 90 mins after consuming 25 g of whey protein from the immobilized and non-immobilized legs to characterize the intramuscular molecular response to protein feeding. Serial blood samples will be collected during that time to characterize the circulating metabolic response to protein ingestion. Knowledge generated from this effort will inform the development of targeted interventions for mitigating anabolic resistance to protein ingestion that develops during periods of muscle disuse.


Clinical Trial Description

Warfighters that sustain musculoskeletal injuries often experience decreased muscle loading and activation post-injury (i.e., muscle disuse) that results in a rapid loss of muscle mass and function. Loss of muscle under these conditions is attributed to a persistent negative net muscle protein balance (muscle protein synthesis [MPS] < muscle protein breakdown [MPB]) that results, in part, from a blunting of MPS in the postprandial state. Nutritional interventions that optimize postprandial MPS have been suggested as countermeasures for this "anabolic resistance" that develops during disuse to preserve muscle mass and accelerate return to duty. However, a poor understanding of mechanisms underlying anabolic resistance during disuse has made it difficult to determine an optimal nutritional intervention. The current study will address this knowledge gap directly by characterizing intramuscular molecular mechanisms underlying anabolic resistance to protein ingestion during muscle disuse. Healthy, recreationally active men and women (n=12) will be studied using a within-subjects, unilateral design. After completing baseline measures of height, weight, and body composition, participants will begin a 3-day run-in phase where they will receive diet instructions (no food provided). Muscle disuse will then be implemented for 5 days using a unilateral leg immobilization model with one leg randomly assigned to immobilization and the contralateral, active leg used as a within-subjects control. Immobilization will be implemented using a rigid knee brace, and participants will ambulate using crutches. Diets will be standardized during the immobilization phase (1.0 g protein/kg/d, 30% of energy intake from fat, and the remaining calories from carbohydrate). Integrated ribonucleic acid (RNA) synthesis will be determined during immobilization in the immobilized and non-immobilized legs using ingested deuterium oxide, salivary and blood sampling, and muscle biopsies. Immediately after immobilization, muscle biopsies will be collected before and 90 mins after consuming 25 g of whey protein from the immobilized and non-immobilized legs to characterize the intramuscular molecular response to protein feeding. Serial blood samples will be collected during that time to characterize the circulating metabolic response to protein ingestion. Knowledge generated from this effort will inform the development of targeted interventions for mitigating anabolic resistance to protein ingestion that develops during periods of muscle disuse. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06228742
Study type Interventional
Source United States Army Research Institute of Environmental Medicine
Contact Emily E Howard, PhD
Phone 508-206-2309
Email emily.e.howard14.civ@health.mil
Status Recruiting
Phase N/A
Start date February 20, 2024
Completion date May 2025

See also
  Status Clinical Trial Phase
Not yet recruiting NCT03662555 - Effect of Neuromuscular Electrical Stimulation Combined With Blood Flow Restriction on Muscular and Cardiovascular Function N/A
Completed NCT00060970 - Evaluating Muscle Function After Ankle Surgery N/A
Recruiting NCT05211986 - Safety and Tolerability of IMMUNA(IMM01-STEM) in Patients With Muscle Atrophy Related to Knee Osteoarthritis. Phase 1/Phase 2
Completed NCT05115643 - Brain and Muscle Plasticity During Immobilization N/A
Completed NCT03797781 - Protein Ingestion and Skeletal Muscle Atrophy N/A
Completed NCT03299972 - Multidisciplinary Research Into the Effects of Resistance Exercise and Whey Protein Supplementation in Healthy Older Men N/A
Completed NCT05072652 - Short Term Immobilization of the Lower Limb N/A
Recruiting NCT05735236 - Comparison of Methods in Post Operative Knee Arthroscopy Rehabilitation N/A
Recruiting NCT04199936 - Postoperative Electrical Muscle Stimulation (POEMS) N/A
Recruiting NCT05314413 - Examining Sex-based Differences in Metabolic and Mechanistic Responses to Disuse Induced Muscle Atrophy N/A
Recruiting NCT05823857 - Effect of an Aquatic Exercise Program in Patients With Chronic Low Back Pain N/A
Recruiting NCT04900701 - The Impact of Energy Intake and Short-term Disuse on Muscle Protein Synthesis Rates and Skeletal Muscle Mass in Middle-aged Adults. N/A
Completed NCT04772040 - Impact of Fish Oil Dose on Tissue Content and Function N/A
Completed NCT06088550 - Effect of Branched-chain Amino Acid Supplementation and Exercise on Muscle Quantity and Quality in Cirrhosis N/A
Enrolling by invitation NCT04456530 - Use of Testosterone to Prevent Post-Surgical Muscle Loss - Pilot Study Phase 2/Phase 3
Recruiting NCT03551990 - Influence of Motor Proteins on Muscle Atrophy in Cancer Patients N/A
Recruiting NCT05206253 - Effectiveness of Egg Versus Whey Protein Powder During Resistance Training N/A
Recruiting NCT05382026 - Milk Versus a Pea-based Beverage for Bone and Muscle Health in Young Athletes N/A
Withdrawn NCT03069781 - The Effects of 17β-estradiol on Skeletal Muscle Early Phase 1
Recruiting NCT02221804 - The Effect of Two Weeks of Voluntary Reduced Physical Activity in Chronic Obstructive Pulmonary Disease (COPD) N/A