Clinical Trials Logo

Movement Disorders clinical trials

View clinical trials related to Movement Disorders.

Filter by:

NCT ID: NCT05539196 Recruiting - Movement Disorders Clinical Trials

A Post-Approval Registry for Exablate 4000 Type 1.0 and Type 1.1 for Unilateral Pallidotomy for the Treatment of Advanced, Idiopathic Parkinson's Disease With Medication-refractory Moderate to Severe Motor Complications

Start date: January 23, 2023
Phase:
Study type: Observational [Patient Registry]

This registry is a prospective, multicenter, international, single arm, observational post-approval registry with follow-up at 3, 6, and 12 months, and annually for 5 years. The proposed registry will enroll 60 subjects and will be conducted at approximately 10 centers worldwide.

NCT ID: NCT05501431 Recruiting - Brain Diseases Clinical Trials

Personalized Parkinson Project PSP Cohort

PPP-PSP
Start date: May 1, 2021
Phase:
Study type: Observational

There is an urgent need for the development of digital progression biomakers, which are sensitive to detect small, but potentially clinically relevant changes in the disease course. Digital biomarkers are based on (i) continuously collected real-time data, during the patient's day to day activities; and (ii) task-based assessment. In this study the investigators are interested in developing algorithms for the detection of disease progression in PSP patients in key clinical parameters: bradykinesia, gait, rising from a chair and falls, based on (i) sensor data obtained by means of passive monitoring during daily living; and (ii) sensor data collected during the Virtual Motor Exam.

NCT ID: NCT05486806 Recruiting - Clinical trials for Neurodegenerative Diseases

Longitudinal Tracking of Patients Diagnosed With Neurodegenerative Movement Disorders

Start date: March 1, 2023
Phase:
Study type: Observational

The purpose of this protocol is to create an active natural history cohort of patients with degenerative movement disorders, tracked in a clinical setting with clinical rating scales and neuroimaging. The overarching rationale is that neurodegenerative diseases may be heterogeneous, complex disorders. A new way of performing clinical trials in these patients may be in order and this protocol aims to build a longitudinally tracked clinical trial-ready cohort of patients. The purpose of this protocol is to establish an active natural history cohort of patients with neurodegenerative movement disorders who are deeply phenotyped and "clinical trial ready" across Mass General Brigham. After a thorough clinical diagnostic evaluation (this may include clinically indicated testing, for example MRI, FDG-PET, MIBG scan, polysomnography, genetic testing, autonomic function tests, inflammatory tests, skin biopsy) the investigators aim to achieve this through: 1. Longitudinal tracking of clinical progression through use of clinical scales including at the present time: UMSARS, BARS, MoCA and UPSIT, PROM, MDS-NMS, UPDRS, and SARA 2. Longitudinal tracking of disease progression through use of neuroimaging including at the present time: TSPO-PET and 3D MRI (see section 1.3) This is a pilot study designed to track patients with neurodegenerative movement disorders across Mass General Brigham through MRI and PET imaging modalities and clinical measures. Figure 5 represents the study design in detail. In short, subjects will be asked to visit Mass General Brigham every 6-9 months over the course of 18 months for imaging and clinical evaluation.

NCT ID: NCT05462080 Recruiting - Clinical trials for Movement Disorders (Incl Parkinsonism)

Correlation of Motor Metrics and Neurological Data

COMMAND
Start date: November 10, 2022
Phase:
Study type: Observational

This is a pilot study to collect data with the Ceraxis product and standard movement disorders tests in order to prove and codify potential correlations.

NCT ID: NCT05452655 Recruiting - Parkinson Disease Clinical Trials

Intensive Multidisciplinary Rehabilitation and Biomarkers in Parkinson's Disease

Start date: December 9, 2020
Phase: N/A
Study type: Interventional

Parkinson's disease (PD) is a progressive neurological disorder characterized by motor and non-motor symptoms such as rigidity, bradykinesia, resting tremor, cognitive and autonomic dysfunctions, gait and balance difficulties. The impairment of gait, balance and cognitive performances is partially responsive to dopaminergic medications. This emphasizes the importance of non-pharmacological interventions for people with PD (pwPD). Intensive multidisciplinary motor and cognitive rehabilitation has been proposed as a complementary and effective treatment for managing pwPD. Several structural and physiological mechanisms have been suggested to underpin exercise-induced neuroplastic changes in PD, such as enhanced synaptic strength and preservation of dopamine neurons. To date, studies on brain changes induced by motor and cognitive exercises in pwPD have been small-scaled and uncontrolled. Identifying accessible and measurable biomarkers for monitoring the events induced by intensive motor and cognitive rehabilitation program would help in testing the treatment effectiveness and would allow personalization of rehabilitation strategies by predicting patients' responsiveness. Based on validated clinical assessments of intensive multidisciplinary rehabilitation treatment, the project will test the ability of a new set of biomarkers to evaluate rehabilitative outcomes in a cohort of people with PD.

NCT ID: NCT05413291 Recruiting - Parkinson's Disease Clinical Trials

Natural History Protocol for Movement Disorders

Start date: October 17, 2022
Phase:
Study type: Observational

Background: A movement disorder is a condition that causes a person s body to move in ways that are not normal. There are different types. Some disorders cause movements people can t control, such as tics or shaking. Some cause reduced or slow movements. Movement disorders can cause disability in people. Sometimes members of the same family will have the same disorder. Researchers want to learn more about how people develop these disorders. This research could lead to better treatments. Objective: This natural history study will collect data on people with different types of movement disorders. It will also collect data on their family members. The data will support further research. Eligibility: Children and adults aged 2 years and older who have a movement disorder. Family members of people with movement disorders are also needed. Design: Participants will undergo screening. They will have a physical exam. Researchers will look at their existing medical images. Any photographs or videos of their movements will also be reviewed. Most participants will come to the NIH clinic for only 1 visit. They will answer questions about their condition. They will have normal tests used to diagnose their condition. They may have blood tests and different types of imaging scans. They may have tests to see how well their nerves function. The tests used will depend on the type of disorder they have. Family members will have some of the same tests as people with disorders. Participants will not receive any new treatments. Some participants may be asked to return for a follow-up visit. Up to 4000 people may participate.

NCT ID: NCT05355480 Recruiting - Parkinson Disease Clinical Trials

Handwriting Analysis in Movement Disorders

HANDWRML
Start date: December 1, 2022
Phase:
Study type: Observational

Handwriting is a complex cognitive prowess that deteriorates in patients affected by neurodegenerative diseases, including movement disorders. More in detail, patients with Parkinson's disease (PD) may manifest prominent handwriting abnormalities which have been collectively identified as parkinsonian micrographia. MIcrographia may manifest at the onset of the disease and then worsens progressively with time. Previous techniques released to investigate micrographia in PD relied on perceptual analysis of simple tasks or were based on expensive technological tools, including tablets. However, handwriting can be promptly collected in an ecological scenario, through safe, cheap, and largely available tools. Also, the objective handwriting analysis through artificial intelligence would represent an innovative strategy even superior to previous techniques, since it allows for the analysis of large amounts of data. In this experimental project, the investigators apply a specific machine learning algorithm to analyze handwriting samples recorded in healthy controls and PD patients. The study aims to verify whether the technique proposed by the investigators would be able to detect parkinsonian micrographia objectively, monitor the evolution of handwriting abnormalities and assess the symptomatic improvement of handwriting following L-Dopa administration in PD patients.

NCT ID: NCT05354622 Recruiting - Movement Disorders Clinical Trials

Hereditary Spastic Paraplegia Genomic Sequencing Initiative (HSPseq)

Start date: April 25, 2022
Phase:
Study type: Observational [Patient Registry]

The purpose of the HSP Sequencing Initiative is to better understand the role of genetics in hereditary spastic paraplegia (HSP) and related disorders. The HSPs are a group of more than 80 inherited neurological diseases that share the common feature of progressive spasticity. Collectively, the HSPs present the most common cause of inherited spasticity and associated disability, with a combined prevalence of 2-5 cases per 100,000 individuals worldwide. In childhood-onset forms, initial symptoms are often non-specific and many children may not receive a diagnosis until progressive features are recognized, often leading to a significant diagnostic delay. Genetic testing in children with spastic paraplegia is not yet standard practice. In this study, the investigators hope to identify genetic factors related to HSP. By identifying different genetic factors, the investigators hope that over time we can develop better treatments for sub-categories of HSP based on cause.

NCT ID: NCT05353517 Recruiting - Parkinson Disease Clinical Trials

Non-invasive Assessment of Synaptic Plasticity

NEUROPLAST
Start date: December 1, 2022
Phase:
Study type: Observational

The pathophysiological mechanisms underlying Movement Disorders, including Parkinson's disease, have been related to altered synaptic plasticity affecting several structures of the central nervous system. Although several previous neurophysiologic investigations have shown abnormal long-term potentiation and depression-like plasticity in M1, other regions crucially involved in motor planning and execution, including the spinal cord, have been studied less. Parkinson's disease arises from the progressive loss of dendritic spines followed by atrophy of specific cortical (i.e. M1) and subcortical structures (i.e. putamen). These structural changes are responsible for the main clinical features of PD such as bradykinesia and rigidity. The present research project aims to probe non-invasively the main pathophysiologic mechanisms underlying altered synaptic plasticity in M1 and spinal cord and their relationship in a cohort of patients with movement disorders, including Parkinson's disease. More in detail, the investigators will use specific methodologies able to induce plasticity, including the repetitive transcranial magnetic stimulation (TMS), concerning the M1 and the focal muscle vibration, regarding the spinal cord. The neuromodulation protocol will imply 2 separate sessions, randomly scheduled to take into account the effect of the symptomatic pharmacologic treatment. Furthermore, patients will be randomly assigned to sham or real non-invasive stimulation groups. Before and after the stimulation protocol, the investigators will collect specific clinical as well as neurophysiologic measures (i.e., thresholds) according to standardized procedures. In conclusion, the goal of the study is to investigate the abnormal plasticity in the M1 and spinal cord in patients affected by specific movement disorders, through non-invasive techniques.

NCT ID: NCT05345340 Recruiting - Clinical trials for Functional Movement Disorder

Telemedicine in Functional Motor Disorder

TeleFMD
Start date: April 1, 2022
Phase: N/A
Study type: Interventional

Functional motor disorders (FMDs) are a broad spectrum of functional neurological disorders, referring to abnormal movements like dystonia, tremor, and gait/balance disorders. Patients with FMDs experience high degrees of disability and distress equivalent to those suffering from degenerative neurological diseases. Rehabilitation is essential in managing FMDs. However, the current systems of rehabilitation delivery face two main challenges. Patients are not receiving the amount and kind of evidence-based rehabilitation they need due to the lack of rehabilitation professionals' experts in the field. The rehabilitation setting is not adequate for the long-term management and monitoring of these patients. To date, no randomized controlled trials are evaluating the effectiveness of Telemedicine in the management of patients with FMD. This is a single-blind randomized-controlled trial (RCT) with 2-parallel arms to demonstrate the effectiveness and superiority of a 5-day intensive rehabilitation treatment followed by a telemedicine program on the motor, non-motor symptoms (pain, fatigue, anxiety, and depression), the self-perception of clinical change and Health-Related Quality of Life, and health care costs in patients with FMDs.