Clinical Trials Logo

Movement Disorder clinical trials

View clinical trials related to Movement Disorder.

Filter by:

NCT ID: NCT00610233 Completed - Movement Disorder Clinical Trials

Effect of Deep Brain Stimulation on Lower Urinary Tract Function

Start date: June 2005
Phase: N/A
Study type: Interventional

The precise mechanisms underlying cerebral regulation of lower urinary tract (LUT) function are still poorly understood. Patients with deep brain stimulation (DBS) offer the unique opportunity to investigate the role of different cerebral centers on LUT function. We hypothesize that DBS has a significant effect on LUT function and that these effects depend on the specific stimulated cerebral center.

NCT ID: NCT00331669 Recruiting - Dystonia Clinical Trials

Efficacy and Safety of Deep Brain Stimulation (DBS) of the Pallidal (GPi) in Patients With Tardive Dystonia

Start date: May 2006
Phase: Phase 2
Study type: Interventional

The purpose of this randomized, double blind, multi-center study is to assess the efficacy and safety of bilateral pallidal deep brain stimulation in patients with tardive dystonia.

NCT ID: NCT00137384 Completed - Focal Dystonia Clinical Trials

Movement-Related Brain Networks Involved in Hand Dystonia

Start date: August 25, 2005
Phase:
Study type: Observational

This study will use various methods to measure the activity of the motor cortex (the part of the brain that controls movements) in order to learn more about focal hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. Patients with focal hand dystonia and healthy normal volunteers between 18 and 65 years of age may be eligible for this study. Each candidate is screened with a medical history, physical examination and questionnaire. Participants undergo the following procedures: Finger Movement Tasks Subjects perform two finger movement tasks. In the first part of the study, they move their index finger repetitively from side to side at 10-second intervals for a total of 200 movements in four blocks of 50 at a time. In the second part of the study, subjects touch their thumb to the other four fingers in sequence from 1, 2, 3 and 4, while a metronome beats 2 times per second to help time the movements. This sequence is repeated for a total of 200 movements in four blocks of 50 at a time. Electroencephalography This test records brain waves. Electrodes (metal discs) are placed on the scalp with an electrode cap, a paste or a glue-like substance. The spaces between the electrodes and the scalp are filled with a gel that conducts electrical activity. Brain waves are recorded while the subject performs a finger movement task, as described above. Magnetoencephalography MEG records magnetic field changes produced by brain activity. During the test, the subjects are seated in the MEG recording room and a cone containing magnetic field detectors is lowered onto their head. The recording may be made while the subject performs a finger task. Electromyography Electromyography (EMG) measures the electrical activity of muscles. This study uses surface EMG, in which small metal disks filled with a conductive gel are taped to the skin on the finger. Magnetic resonance imaging MRI uses a magnetic field and radio waves to produce images of body tissues and organs. The patient lies on a table that can slide in and out of the scanner (a narrow metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning. Most scans last between 45 and 90 minutes. Subjects may be asked to lie still for up to 30 minutes at a time, and can communicate with the MRI staff at all times during the procedure. Questionnaire This questionnaire is designed to detect any sources of discomfort the subject may have experienced during the study.

NCT ID: NCT00118586 Completed - Healthy Clinical Trials

Neuropathology of Spasmodic Dysphonia

Start date: July 14, 2005
Phase:
Study type: Observational

This study will look for abnormalities in a brain of persons affected with spasmodic dysphonia, a form of movement disorder that involves involuntary "spasms" of the muscles in the vocal folds causing breaks of speech and affecting voice quality. The causes of this disorder are not known. The study will compare results of magnetic resonance imaging (MRI) in people with spasmodic dysphonia and in healthy volunteers. People with adductor or abductor spasmodic dysphonia and healthy volunteers may be eligible for this study. Candidates are screened with a medical history, physical examination, and a test called nasolaryngoscopy. For this test, the inside of the subject's nose is sprayed with a decongestant, and a small, flexible tube called a nasolaryngoscope is passed through the nose to the back of the throat to allow examination of the larynx (voice box). During this procedure, the subject is asked to perform tasks such as talking, singing, whistling, and saying prolonged vowels. The nasolaryngoscope is connected to a camera to record the movements of the vocal folds during these tasks. Eligible participants then undergo MRI of the brain. MRI uses a strong magnetic field and radio waves instead of x-rays to obtain images of body organs and tissues. For this test, the subject lies on a table that slides into the MRI scanner, a narrow metal cylinder, wearing ear plugs to muffle loud knocking sound that occurs during the scan. During MRI anatomical images of the brain are obtained. Subject may be asked to participate in up to two scanning sessions. Each session takes about 1-1/2 hours. Participants may also be asked to volunteer for a brain donation program which is optional. Information gained from donated tissue may lead to better treatments and potential cures for spasmodic dysphonia.

NCT ID: NCT00105131 Completed - Parkinson Disease Clinical Trials

Genetic Characterization of Parkinson's Disease

Start date: March 2005
Phase: N/A
Study type: Observational

This study will explore the risks and causes of Parkinson's disease, a chronic progressive nervous system disorder. Patients typically have tremors, muscle weakness and a shuffling gait. Patients with Parkinson's disease, their relatives and healthy volunteers may be eligible for this study. Candidates must be 18 years of age or older. Patients whose parkinsonism is due to a secondary cause, such as infection or injury, and healthy volunteers who have a first degree family member (parent, grandparent, child, sibling) with Parkinson's disease are excluded from enrollment. Participants are asked about possible symptoms they may have and about their general health. They provide a blood sample to obtain DNA for genetic analysis to look for genetic differences that might be related to risks for Parkinson's disease. White blood cells may be treated in the laboratory to grow a cell line, which provides a source of substances in the blood without having to draw samples repeatedly.

NCT ID: NCT00018889 Recruiting - Movement Disorder Clinical Trials

Phenotype/Genotype Correlations in Movement Disorders

Start date: October 22, 2001
Phase:
Study type: Observational

The goal of this protocol is to identify families with inherited movement disorders and evaluate disease manifestations to establish an accurate clinical diagnosis by using newest technological advances and investigate the underlying molecular mechanisms. Studies of inherited movement disorders in large families with good genealogical records are especially valuable. Patients with diseases of known molecular basis will be genotyped in order to investigate phenotype/genotype correlation. Patients with disease of unknown or incomplete genetic characterization will be studied with a hope of contributing to the identification of specific disease-causing genes and genetic mechanisms responsible for a specific disorder.

NCT ID: NCT00017979 Completed - Healthy Clinical Trials

Study of Brain Control of Movement

Start date: June 2001
Phase: N/A
Study type: Observational

This study will use transcranial magnetic stimulation to examine how the brain controls movement by sending messages to the spinal cord and muscles and what goes wrong with this process in disease. Normal healthy volunteers between the ages of 18 and 65 years may be eligible to participate. In transcranial magnetic stimulation, an insulated wire coil is placed on the subject's scalp or skin. Brief electrical currents are passed through the coil, creating magnetic pulses that stimulate the brain. During the stimulation, participants will be asked to tense certain muscles slightly or perform other simple actions. The electrical activity of the muscle will be recorded on a computer through electrodes applied to the skin over the muscle. In most cases, the study will last less than 3 hours.

NCT ID: NCT00017966 Completed - Healthy Clinical Trials

Brain Excitability During Self-Paced Voluntary Movements

Start date: June 2001
Phase: N/A
Study type: Observational

This study will use transcranial magnetic stimulation to examine how the brain controls movement by sending messages to the spinal cord and muscles and what goes wrong with this process in disease. Normal healthy volunteers 18 years of age and older may be eligible to participate. In transcranial magnetic stimulation, an insulated wire coil is placed on the subject's scalp or skin. Brief electrical currents are passed through the coil, creating magnetic pulses that stimulate the brain. During the stimulation, participants will be asked to tense certain muscles slightly or perform other simple actions. The electrical activity of the muscle will be recorded on a computer through electrodes applied to the skin over the muscle. In most cases, the study will last less than 3 hours.

NCT ID: NCT00001780 Completed - Healthy Clinical Trials

Magnetic Stimulation of the Human Nervous System

Start date: February 1998
Phase: N/A
Study type: Observational

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique to gather information about brain function. It is very useful when studying the areas of the brain related to motor activity (motor cortex, corticospinal tract, spinal cord and nerve roots). The procedure is conducted by transmitting a magnetic signal into the brain to stimulate an area of the body. Electrodes (small pieces of metal taped to areas of the body) are used in order to measure electrical activity. A magnetic signal is sent from a metal instrument held close to the patient's head, to an area of the brain responsible for motor activity of a certain area of the body. The electrodes pick up and record the electrical activity in the muscles. This study will employ the use of TMS to diagnose neurological disorders that affect the motor cortex or the corticospinal tract. Normal subjects are sometimes studied to investigate normal activity of the nervous system and to train doctors in clinical neurophysiology and electrodiagnostic medicine at the National Institutes of Health (NIH).

NCT ID: NCT00001663 Completed - Movement Disorder Clinical Trials

Treatment of Cortical Myoclonus With Repetitive Transcranial Magnetic Stimulation

Start date: January 1997
Phase: Phase 1
Study type: Interventional

Myoclonus is a condition related to epilepsy of involuntary twitching or jerking of the limbs. The purpose of this study is to determine if stimulation of the brain with magnetic pulses can decrease myoclonus. Researchers believe that this may be possible because in studies on normal volunteers, magnetic stimulation made areas of the brain difficult to activate for several minutes. In addition, early studies on patients with myoclonus have shown magnetic stimulation to be effective at decreasing involuntary movements. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can be used to stimulate brain activity and gather information about brain function. It is very useful when studying the areas of the brain and spinal cord related to motor activity (motor cortex and corticospinal tract). Repetitive transcranial magnetic stimulation (rTMS) involves the placement of coil of wire (electromagnet) on the patient's scalp and rapidly turning on and off the electrical current. The changing magnetic field produces weak electrical currents in the brain near the coil. This permits non-invasive, relatively localized stimulation of the surface of the brain (cerebral cortex). The effect of magnetic stimulation varies, depending upon the location, intensity and frequency of the magnetic pulses. Researchers plan to use rTMS for 10 days on patients participating in the study. The 10 day period will be broken into 5 days of active repetitive magnetic stimulation and 5 days of placebo "ineffective" stimulation. At the end of the 10 day period, if the results show that rTMS was beneficial, patients may undergo an additional 5 days of active rTMS.