Clinical Trials Logo

Mitochondrial Alteration clinical trials

View clinical trials related to Mitochondrial Alteration.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT06167135 Recruiting - Obesity Clinical Trials

Polycystic Ovary Syndrome, Mitochondrial Dysfunction, Obesity, Insulin Resistance Infertility (POMODORI) Cohort

POMODORI
Start date: September 10, 2021
Phase:
Study type: Observational [Patient Registry]

Enrolling of 150 female patients of fertile age diagnosed with PCOS, insulin resistance, infertility, or mitochondrial disease, and the same number of age- and sex-matched controls are planned. During the research biomarkers already with mitochondrial dysfunction in the scientific literature and common mtDNA abnormalities (deletions, point mutations, copy number changes, etc.) are examined.

NCT ID: NCT05858463 Recruiting - Clinical trials for Pulmonary Disease, Chronic Obstructive

High Intensity Interval Training and Muscle Adaptations During PR

MITOXITRAIN
Start date: September 2023
Phase: N/A
Study type: Interventional

Pulmonary rehabilitation (PR) is a validated treatment in patients with Chronic Obstructive Pulmonary Disease (COPD), improving exercise tolerance, quality of life and dyspnea. However, 20 to 30% of patients did not respond to PR and particularly those with chronic hypoxaemia. In most disabled patients, High Intensity Interval training (HIIT) is an alternative to perform exercise training with similar gain in exercise capacity than continuous exercise training. In patients with exercise-induced oxygen desaturation, the repetitions of hypoxia/resaturation phases during intermittent exercise could result in bursts of oxidative stress and induce positive or detrimental effect on mitochondrial function according to the importance in the oxidant stimulus. Few data have ascertained the benefit of HIIT on mitochondrial oxidative capacity (Vmax) in healthy subjects compared to continuous exercise training but no data are available in COPD patients with exercise-induced desaturation, and the change in oxidative stress in such training regimen. The investigators hypothesize that the repetitive bursts of oxidative stress and the improved antioxidant capacity in the course of the training sessions would stimulate mitochondrial adaptations to a larger extent after HIIT than continuous exercise training in severe COPD patients with hypoxemia. Moreover, they will assess the relationship between the change in oxidative stress in blood and in muscle. The clinical relevance of this study will be to ascertain the benefit and the safety of HITT in this subgroup of COPD patients in whom benefit of PR is often weak.