Clinical Trials Logo

Clinical Trial Summary

Males from areas of social deprivation within the town of Middlesbrough (UK) were targetted and recruited on to a high-intensity, exergaming intervention over a 6-week period. Eligible participants were randomly allocated to an intervention group (weekly exergaming) or control group (normal habitual lifestyle). All participants completed baseline (week 0) and follow-up (week 7) measures of metabolic health. Participants in the intervention group were invited to three sessions a week of high-intensity exergaming performed against their peers on a developed boxing game.


Clinical Trial Description

A 6-week exploratory controlled trial designed to assess the fidelity of the game in terms of delivering the intended training stimulus and to examine the effect of the intervention on selected health outcomes was conducted. As appropriate for an exploratory trial, the investigators did not conduct formal sample size estimation a priori, rather the CIs would be used to inform future trials. A targeted recruitment approach at locations predominantly attended by men may facilitate uptake of participants was used. Therefore, to maximize recruitment within the intended population, relevant gatekeepers were approached at institutions positioned within regions of social deprivation. Thus, two settings used for recruitment and the trials were a social club and mosque, both situated within deprived regions of Middlesbrough, United Kingdom (TS1 and TS4). A total of 24 males were recruited into the trial (Figure 4) using relevant gatekeepers at institutions positioned within regions of social deprivation. Two recruitment drives (October 2014 and February 2015) took place, and these involved live demonstrations of the technology followed by word-of-mouth and snowballing approaches. The exergaming system was important in this recruitment process because it provided something tangible and interesting to engage potential participants.

A third-party minimization process using baseline measures of age, waist circumference, and predicted maximum oxygen consumption (VO2 max) was used to remove bias in group allocation. The control group was instructed to maintain their current physical activity levels and inform the researchers should any changes arise during the intervention period. Overall retention to the intervention that encompassed baseline and follow-up measures was 87.5% (21/24).

To explore perceptions of the exergame and the HIT regime, semistructured interviews were conducted with 5 intervention participants following the 6-week training period, which were analyzed semantically. The study was approved by the ethics committee of Teesside University, United Kingdom, and written informed consent was obtained from all participants.

Evidence recommends a minimum duration of 12 weeks for a HIT protocol to promote favorable changes in blood pressure and anthropometric measurements of obesity [35]. However, a 6-week intervention was selected, as a minimum of 13 sessions (0.16 work/rest ratio) is sufficient to elicit moderate improvements in VO2 max in sedentary individuals. Additionally, there is still ambiguity regarding the optimal work-to-rest ratio when designing HIT interventions, particularly in populations with varied age, baseline fitness, and training experience. Therefore, longer duration HIT models (1-4 min) were deemed unsuitable for the target population. Furthermore, minigames (such as the current exergame) have short life spans, where adherence to a longer intervention (eg, 12 weeks) may diminish over time and influence health outcomes. This was evident from a 12-week pilot study (unpublished data) using an exergame in the same population that saw attendance drop from 53% during week 2 to 16% during week 12.

Participants allocated to the intervention group were invited to attend three sessions of exergaming per week. At the beginning of the exergaming session, participants were required to complete a 6-min structured warm-up consisting of a series of exercises on a 210 mm step until both participants reached >70% HRmax. Session workloads with volumetric progression were set automatically once the user's identifying information was entered. The session workloads were 120-s, 150-s, and 180-s of work during weeks 1 and 2, weeks 3 and 4, and weeks 5 and 6, respectively.

To avoid staleness, the repetition lengths (10, 20, or 30-s) were randomly selected at the beginning of each round. The investigators set the work-to-rest ratio at 1:4, and thus, the respective repetitions were followed by 40, 80, or 120-s of active recovery. Participants were instructed to perform the repetitions at an intensity ≥85% HRmax. Each exergaming session took approximately 30 to 40 min to complete, including equipment set-up, warm-up with additional enjoyment, and task immersion questionnaires upon completion of the HIT bouts (not reported here). Heart rate responses were taken within repetitions and therefore, did not include any of the recovery period. This, therefore, avoided an overestimation of physiological load, which can occur when heart rate continues to rise after exercise cessation. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03477773
Study type Interventional
Source Sheffield Hallam University
Contact
Status Completed
Phase N/A
Start date November 1, 2014
Completion date April 30, 2015

See also
  Status Clinical Trial Phase
Recruiting NCT04635202 - Effect of Elliptical Training on Metabolic Homeostasis in Metabolic Syndrome N/A
Completed NCT05343858 - Pilot Study to Evaluate the Effect of Two Microalgae Consumption on Metabolic Syndrome N/A
Completed NCT04053686 - An Intervention to Reduce Prolonged Sitting in Police Staff N/A
Active, not recruiting NCT05891834 - Study of INV-202 in Patients With Obesity and Metabolic Syndrome Phase 2
Recruiting NCT05040958 - Carotid Atherosclerotic Plaque Load and Neck Circumference
Completed NCT03644524 - Heat Therapy and Cardiometabolic Health in Obese Women N/A
Active, not recruiting NCT02500147 - Metformin for Ectopic Fat Deposition and Metabolic Markers in Polycystic Ovary Syndrome (PCOS) Phase 4
Recruiting NCT03227575 - Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control N/A
Recruiting NCT05972564 - The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function Phase 1/Phase 2
Completed NCT03289897 - Non-invasive Rapid Assessment of NAFLD Using Magnetic Resonance Imaging With LiverMultiScan N/A
Recruiting NCT05956886 - Sleep Chatbot Intervention for Emerging Black/African American Adults N/A
Completed NCT06057896 - Effects of Combined Natural Molecules on Metabolic Syndrome in Menopausal Women
Active, not recruiting NCT03613740 - Effect of Fucoxanthin on the Metabolic Syndrome, Insulin Sensitivity and Insulin Secretion Phase 2
Completed NCT04498455 - Study of a Prebiotic Supplement to Mitigate Excessive Weight Gain Among Physicians in Residency Phase 4
Completed NCT05688917 - Green Coffee Effect on Metabolic Syndrome N/A
Completed NCT04117802 - Effects of Maple Syrup on Gut Microbiota Diversity and Metabolic Syndrome N/A
Completed NCT03697382 - Effect of Daily Steps on Fat Metabolism N/A
Completed NCT03241121 - Study of Eating Patterns With a Smartphone App and the Effects of Time Restricted Feeding in the Metabolic Syndrome N/A
Completed NCT04509206 - Virtual Teaching Kitchen N/A
Completed NCT05124847 - TREating Pediatric Obesity N/A