Insulin Resistance Clinical Trial
Official title:
Effects of Progressive Negative Energy Balance Induced by Diet or Exercise on Glucose Tolerance, Insulin Sensitivity, and Beta-cell Function
Verified date | March 2018 |
Source | Clinical Nutrition Research Centre, Singapore |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Type 2 diabetes results from a combination of peripheral insulin resistance and beta-cell
dysfunction, and manifests as fasting and postprandial hyperglycemia. In Singapore, despite
the relatively low prevalence of overweight and obesity, the prevalence of type 2 diabetes is
disproportionately high and is expected to double in the near future. This indicates that
insulin resistance and beta-cell dysfunction are widely prevalent even among individuals who
are not overweight or obese. Still, weight loss induced by a variety of ways (calorie
restriction, exercise, surgery, etc.) is considered the cornerstone of diabetes treatment.
This underscores the importance of negative energy balance in improving metabolic function.
In fact, negative energy balance induced by calorie restriction can improve metabolic
function acutely, i.e. within 1-2 days and before any weight loss occurs. Likewise, negative
energy balance induced by a single session of aerobic exercise improves metabolic function
over the next few days. However, the magnitude of negative energy balance that needs to be
achieved in order to improve metabolic function, as well as possible dose-response
relationships, are not known. Furthermore, the comparative efficacy of calorie restriction
vs. exercise in improving metabolic function has never been directly assessed.
Accordingly, a better understanding of the effects of acute negative energy balance induced
by calorie restriction or aerobic exercise on insulin sensitivity and beta-cell function will
have important implications for public health, by facilitating the design of effective
lifestyle (diet and physical activity) interventions to prevent or treat type 2 diabetes.
To test these hypotheses, whole-body insulin sensitivity, the acute insulin response to
glucose, and the disposition index (i.e. beta-cell function), will be determined the morning
after a single day of progressively increasing negative energy balance (equivalent to 20% or
40% of total daily energy needs for weight maintenance) induced by calorie restriction or
aerobic exercise.
Results from this project are expected to result in the better understanding of the effects
of negative energy balance induced by diet and exercise on metabolic function. Therefore,
this project may help in the design of effective lifestyle intervention programs for the
prevention and treatment of type 2 diabetes.
Status | Active, not recruiting |
Enrollment | 61 |
Est. completion date | December 31, 2018 |
Est. primary completion date | July 31, 2018 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 21 Years to 65 Years |
Eligibility |
Inclusion Criteria: - Healthy males and females - Age between 21-65 years - BMI from =18 to <30 kg/m2 (BMI is equal to body weight in kilograms divided by height in metres squared) Exclusion Criteria: - Persons with metabolic diseases that require use of medications (e.g. diabetes, heart disease, hypertension, etc.) - Persons using tobacco products (smokes daily or occasionally) - Persons who regularly consume alcohol (=1 drink/day) - Women on oral contraceptives or hormone replacement therapy - Pregnant or breastfeeding women - Persons who have had recent weight loss or gain (=5% over the past 6 months) - Persons with contraindication to calorie restriction (e.g. anemia) or exercise (e.g. asthma) |
Country | Name | City | State |
---|---|---|---|
Singapore | Clinical Nutrition Research Centre | Singapore |
Lead Sponsor | Collaborator |
---|---|
Clinical Nutrition Research Centre, Singapore |
Singapore,
Asia Pacific Cohort Studies Collaboration, Ni Mhurchu C, Parag V, Nakamura M, Patel A, Rodgers A, Lam TH. Body mass index and risk of diabetes mellitus in the Asia-Pacific region. Asia Pac J Clin Nutr. 2006;15(2):127-33. Review. — View Citation
Aucott L, Poobalan A, Smith WC, Avenell A, Jung R, Broom J, Grant AM. Weight loss in obese diabetic and non-diabetic individuals and long-term diabetes outcomes--a systematic review. Diabetes Obes Metab. 2004 Mar;6(2):85-94. Review. — View Citation
Bergman RN, Ader M, Huecking K, Van Citters G. Accurate assessment of beta-cell function: the hyperbolic correction. Diabetes. 2002 Feb;51 Suppl 1:S212-20. Review. — View Citation
Boston RC, Stefanovski D, Moate PJ, Sumner AE, Watanabe RM, Bergman RN. MINMOD Millennium: a computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diabetes Technol Ther. 2003;5(6):1003-15. — View Citation
Bradley D, Magkos F, Klein S. Effects of bariatric surgery on glucose homeostasis and type 2 diabetes. Gastroenterology. 2012 Oct;143(4):897-912. doi: 10.1053/j.gastro.2012.07.114. Epub 2012 Aug 8. Review. — View Citation
Deurenberg-Yap M, Chew SK, Lin VF, Tan BY, van Staveren WA, Deurenberg P. Relationships between indices of obesity and its co-morbidities in multi-ethnic Singapore. Int J Obes Relat Metab Disord. 2001 Oct;25(10):1554-62. — View Citation
Deurenberg-Yap M, Yian TB, Kai CS, Deurenberg P, VAN Staveren WA. Manifestation of cardiovascular risk factors at low levels of body mass index and waist-to-hip ratio in Singaporean Chinese. Asia Pac J Clin Nutr. 1999 Sep;8(3):177-83. — View Citation
Gaborit B, Abdesselam I, Kober F, Jacquier A, Ronsin O, Emungania O, Lesavre N, Alessi MC, Martin JC, Bernard M, Dutour A. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes (Lond). 2015 Mar;39(3):480-7. doi: 10.1038/ijo.2014.126. Epub 2014 Jul 21. — View Citation
Ganda OP, Day JL, Soeldner JS, Connon JJ, Gleason RE. Reproducibility and comparative analysis of repeated intravenous and oral glucose tolerance tests. Diabetes. 1978 Jul;27(7):715-25. — View Citation
Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, Neifing JL, Ward WK, Beard JC, Palmer JP, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993 Nov;42(11):1663-72. — View Citation
Kirk E, Reeds DN, Finck BN, Mayurranjan SM, Patterson BW, Klein S. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology. 2009 May;136(5):1552-60. doi: 10.1053/j.gastro.2009.01.048. Epub 2009 Jan 25. Erratum in: Gastroenterology. 2009 Jul;137(1):393. Mayurranjan, Mitra S [corrected to Mayurranjan S Mitra]. — View Citation
Luo D, Liu F, Li X, Yin D, Lin Z, Liu H, Hou X, Wang C, Jia W. Comparison of the effect of 'metabolically healthy but obese' and 'metabolically abnormal but not obese' phenotypes on development of diabetes and cardiovascular disease in Chinese. Endocrine. 2015 May;49(1):130-8. doi: 10.1007/s12020-014-0444-2. Epub 2014 Oct 14. — View Citation
Maggard-Gibbons M, Maglione M, Livhits M, Ewing B, Maher AR, Hu J, Li Z, Shekelle PG. Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA. 2013 Jun 5;309(21):2250-61. doi: 10.1001/jama.2013.4851. Review. — View Citation
Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, de Las Fuentes L, He S, Okunade AL, Patterson BW, Klein S. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab. 2016 Apr 12;23(4):591-601. doi: 10.1016/j.cmet.2016.02.005. Epub 2016 Feb 22. — View Citation
Magkos F, Smith GI, Reeds DN, Okunade A, Patterson BW, Mittendorfer B. One day of overfeeding impairs nocturnal glucose but not fatty acid homeostasis in overweight men. Obesity (Silver Spring). 2014 Feb;22(2):435-40. doi: 10.1002/oby.20562. Epub 2013 Sep 10. — View Citation
Magkos F, Tsekouras Y, Kavouras SA, Mittendorfer B, Sidossis LS. Improved insulin sensitivity after a single bout of exercise is curvilinearly related to exercise energy expenditure. Clin Sci (Lond). 2008 Jan;114(1):59-64. — View Citation
Magkos F, Yannakoulia M, Chan JL, Mantzoros CS. Management of the metabolic syndrome and type 2 diabetes through lifestyle modification. Annu Rev Nutr. 2009;29:223-56. doi: 10.1146/annurev-nutr-080508-141200. Review. — View Citation
Magkos, F. and L.S. Sidossis, Exercise and insulin sensitivity. Where do we stand? You'd better run! European Endocrinology, 2008. 4(1): p. 22-25.
Mikines KJ, Sonne B, Farrell PA, Tronier B, Galbo H. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol. 1988 Mar;254(3 Pt 1):E248-59. — View Citation
Phan TP, Alkema L, Tai ES, Tan KH, Yang Q, Lim WY, Teo YY, Cheng CY, Wang X, Wong TY, Chia KS, Cook AR. Forecasting the burden of type 2 diabetes in Singapore using a demographic epidemiological model of Singapore. BMJ Open Diabetes Res Care. 2014 Jun 11;2(1):e000012. doi: 10.1136/bmjdrc-2013-000012. eCollection 2014. — View Citation
Plourde CÉ, Grenier-Larouche T, Caron-Dorval D, Biron S, Marceau S, Lebel S, Biertho L, Tchernof A, Richard D, Carpentier AC. Biliopancreatic diversion with duodenal switch improves insulin sensitivity and secretion through caloric restriction. Obesity (Silver Spring). 2014 Aug;22(8):1838-46. doi: 10.1002/oby.20771. Epub 2014 Apr 24. — View Citation
Prigeon RL, Kahn SE, Porte D Jr. Reliability of error estimates from the minimal model: implications for measurements in physiological studies. Am J Physiol. 1994 Feb;266(2 Pt 1):E279-86. — View Citation
Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R, Janssen I. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med. 2000 Jul 18;133(2):92-103. — View Citation
Thomas F, Smith GC, Lu J, Babor R, Booth M, Beban G, Chase JG, Murphy R. Differential Acute Impacts of Sleeve Gastrectomy, Roux-en-Y Gastric Bypass Surgery and Matched Caloric Restriction Diet on Insulin Secretion, Insulin Effectiveness and Non-Esterified Fatty Acid Levels Among Patients with Type 2 Diabetes. Obes Surg. 2016 Aug;26(8):1924-31. doi: 10.1007/s11695-015-2038-3. — View Citation
Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. 1949. Nutrition. 1990 May-Jun;6(3):213-21. — View Citation
Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, Klein S, Holloszy JO; Washington University School of Medicine CALERIE Group. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am J Clin Nutr. 2006 Nov;84(5):1033-42. — View Citation
Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, Zimmet P, Son HY. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006 Nov 11;368(9548):1681-8. Review. — View Citation
* Note: There are 27 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Insulin sensitivity | Insulin sensitivity index (i.e. Si) will be determined by using minimal modeling analysis of the IVGTT data. | 4-6 weeks | |
Primary | Beta-cell function | Beta-cell function will be determined as the disposition index (i.e. product of acute insulin response [AIR] and Si) using minimal modeling analysis of the IVGTT data. | 4-6 weeks |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03142633 -
MicroRNA as Biomarkers for Development of Metabolic Syndrome in Women With Polycystic Ovary Syndrome
|
||
Recruiting |
NCT04984226 -
Sodium Bicarbonate and Mitochondrial Energetics in Persons With CKD
|
Phase 2 | |
Recruiting |
NCT05354245 -
Using a Complex Carbohydrate Mixture to Steer Fermentation and Improve Metabolism in Adults With Overweight and Prediabetes (DISTAL)
|
N/A | |
Completed |
NCT03383822 -
Regulation of Endogenous Glucose Production by Brain Insulin Action in Insulin Resistance
|
Phase 1/Phase 2 | |
Recruiting |
NCT06007404 -
Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
|
||
Suspended |
NCT03652987 -
Endocrine and Menstrual Disturbances in Women With Polycystic Ovary Syndrome (PCOS)
|
||
Completed |
NCT04203238 -
Potato Research for Enhancing Metabolic Outcomes
|
N/A | |
Recruiting |
NCT03658564 -
Preoperative Oral Carbohydrate Treatment Minimizes Insulin Resistance
|
N/A | |
Completed |
NCT04183257 -
Effect of Escalating Oral Vitamin D Replacement on HOMA-IR in Vitamin D Deficient Type 2 Diabetics
|
Phase 4 | |
Completed |
NCT04117802 -
Effects of Maple Syrup on Gut Microbiota Diversity and Metabolic Syndrome
|
N/A | |
Completed |
NCT03627104 -
Effect of Dietary Protein and Energy Restriction in the Improvement of Insulin Resistance in Subjects With Obesity
|
N/A | |
Completed |
NCT05124847 -
TREating Pediatric Obesity
|
N/A | |
Active, not recruiting |
NCT03288025 -
Pulmonary Arterial Hypertension Improvement With Nutrition and Exercise (PHINE)
|
N/A | |
Completed |
NCT03809182 -
Effect of Dexmedetomidine on Postoperative Glucose and Insulin Levels.
|
Phase 4 | |
Completed |
NCT01809288 -
Identifying Risk for Diabetes and Heart Disease in Women
|
||
Completed |
NCT04642482 -
Synbiotic Therapy on Intestinal Microbiota and Insulin Resistance in Obesity
|
Phase 4 | |
Terminated |
NCT03278236 -
Does Time Restricted Feeding Improve Glycaemic Control in Overweight Men?
|
N/A | |
Not yet recruiting |
NCT06159543 -
The Effects of Fresh Mango Consumption on Cardiometabolic Outcomes in Free-living Individuals With Prediabetes
|
N/A | |
Withdrawn |
NCT04741204 -
Metformin Use to Reduce Disparities in Newly Diagnosed Breast Cancer
|
Phase 4 | |
Not yet recruiting |
NCT05540249 -
Pre-operative Carbohydrates in Diabetic Patients Undergoing CABG
|
N/A |