Clinical Trials Logo

Clinical Trial Summary

Open heart surgery requires the use of a cardiopulmonary bypass (CPB) circuit. As blood flows across the artificial surfaces of the CPB circuit, platelets are activated and consumed. This activation results in a profound inflammatory reaction and need for transfusion. This reaction is intensified in younger, smaller patients undergoing longer, more complex open heart surgery. Nitric oxide is naturally released by vascular endothelial surfaces and acts as a signaling molecule which prevents platelet activation. The investigators hypothesize that the addition of the nitric oxide to the sweep gas of the oxygenator during cardiopulmonary bypass surgery will replace this natural endothelial function and thus prevent platelet activation and consumption. The investigators plan to test this hypothesis with a pilot double blinded, randomized trial of 40 patients less than a year of age undergoing cardiac surgery requiring CPB.


Clinical Trial Description

Open heart surgery requires the use of a CPB circuit. As blood flows across the artificial surfaces of the CPB circuit, platelets are consumed (1). The investigators recently completed a prospective observational trial of neonates undergoing cardiac surgery requiring CPB. In this trial the investigators demonstrated a dramatic decrease in platelet count from baseline to intraoperatively. The platelet count rebounded with transfusion and normalized by the time of admission to the cardiac intensive care unit (CICU). Despite prophylactic transfusion of blood products to all patients, 41% experienced excessive postoperative bleeding (defined in terms of chest tube output and need for reoperation).

Further investigation by Dr. Debra Newman in her lab at the Blood Research Institute delineated the platelet defect associated with CPB in the neonates more clearly. Dr. Newman found a significant decrease in the platelet responsiveness to thrombin receptor activating protein (TRAP), thromboxane A2 analog (U46619), and collagen-related peptide (CRP). Further analysis revealed that the effect of CPB on platelet responsiveness to TRAP and U46619 is likely dependent on its effect on platelet count, whereas CPB affects platelet responsiveness to CRP independently of platelet count.

In children, postoperative blood loss and transfusion of blood products has been shown to contribute significantly to the morbidity and mortality of surgeries that require CPB (2, 3). In addition to the need for blood product replacement, the activation of platelets contributes to the intense inflammatory reaction seen in surgeries requiring CPB (4). Patients with a less intense inflammatory response post-operatively generally do better with less morbidity (5).

The oxygenator membrane surface of the CPB pump is a large contributor to the surface area of CPB circuit. As a major contributor to the surface area of the circuit and the location of the gas interface, the oxygenator is a significant contributor to the hemostatic and inflammatory stimulus of CPB. Advances in oxygenator technology have modified the surface to prevent interaction with the blood, but no artificial surface has been found to be as inert as the natural endothelium of the vasculature (5).

A major mechanism by which endothelial surfaces inhibit activation of platelets is by producing nitric oxide (6). Nitric oxide is lipophilic and traverses cellular membranes where it acts on intracellular signaling pathways in platelets to prevent platelet activation and aggregation (7). The artificial surface of the CPB pump does not produce nitric oxide and hence is devoid of this potent inhibitor of platelet activation.

In multiple experimental ex-vivo models of CPB, the addition of nitric oxide to the sweep gas of the oxygenator resulted in preserved platelet counts, preserved platelet function, and decreased markers of platelet activation (8-11).

Multiple clinical trials of nitric oxide administration during CPB have shown positive results. Chung et al. showed in a group of 41 adults undergoing coronary artery surgery requiring CPB that the addition of nitric oxide to the oxygenator resulted in a preservation of platelet numbers, a decrease in markers of platelet activation, and less post-operative blood loss (12). Checchia et al. investigated the effect of nitric oxide in a group of sixteen infants undergoing repair of tetralogy of Fallot and found the patients treated with nitric oxide had an improvement in clinical outcomes of length of stay in the intensive care unit and number of hours requiring mechanical ventilation (13). James et al. showed a 50% decrease in the incidence of low cardiac output syndrome in a randomized trial of 198 children. The effect was most profound in the younger children and those undergoing the most complex repairs (14). These patients are also the ones demonstrated to have the most intense inflammatory reaction postoperatively (15).

Despite these promising studies, several questions remain. The mechanism of platelet preservation has not been delineated. The collaboration between clinicians at Children's Hospital of Wisconsin and Dr. Newman at the Blood Center of Wisconsin has been established and has experience in investigating the effects of CPB on platelets in infants. This collaboration is poised to help define the mechanism of nitric oxide in preserving platelet function during CPB in infants. All studies to date have been single center and underpowered to investigate clinical outcomes of interest such as mortality and length of hospital stay. Dr. Niebler has begun to assemble a multi-center study team. Local data is necessary to help guide the power calculation in determining the sample size for this larger study and to demonstrate the capabilities of the local institution in leading a trial of this magnitude. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03455218
Study type Interventional
Source Medical College of Wisconsin
Contact
Status Completed
Phase Phase 2/Phase 3
Start date April 25, 2018
Completion date May 5, 2019

See also
  Status Clinical Trial Phase
Recruiting NCT03995979 - Inflammation and Protein Restriction N/A
Completed NCT03255187 - Effect of Dietary Supplemental Fish Oil in Alleviating Health Hazards Associated With Air Pollution N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Completed NCT03577223 - Egg Effects on the Immunomodulatory Properties of HDL N/A
Completed NCT04383561 - Relationship Between LRG and Periodontal Disease N/A
Active, not recruiting NCT03622632 - Pilot Study to Measure Uric Acid in Traumatized Patients: Determinants and Prognostic Association
Completed NCT06216015 - Exercise Training and Kidney Transplantation N/A
Completed NCT04856748 - Nomogram to Diagnose Prostatic Inflammation (PIN) in Men With Lower Urinary Tract Symptoms
Completed NCT05529693 - Efficacy of a Probiotic Strain on Level of Markers of Inflammation in an Elderly Population N/A
Recruiting NCT05415397 - Treating Immuno-metabolic Depression With Anti-inflammatory Drugs Phase 3
Recruiting NCT05670301 - Flemish Joint Effort for Biomarker pRofiling in Inflammatory Systemic Diseases N/A
Recruiting NCT04543877 - WHNRC (Western Human Nutrition Research Center) Fiber Intervention Study Early Phase 1
Recruiting NCT05775731 - Markers of Inflammation and of the Pro-thrombotic State in Hospital Shift and Day Workers
Completed NCT03859934 - Metabolic Effects of Melatonin Treatment Phase 1
Completed NCT03429920 - Effect of Fermented Soy Based Product on Cardiometabolic Risk Factors N/A
Completed NCT06065241 - Quantifiably Determine if the Botanical Formulation, LLP-01, Has a Significant Clinical Effect on Proteomic Inflammatory Biomarkers and Epigenetic Changes in Healthy, Older Individuals. N/A
Active, not recruiting NCT05864352 - The Role of Dietary Titanium Dioxide on the Human Gut Microbiome and Health
Completed NCT03318731 - Efficacy and Safety of Fenugreek Extract on Markers of Muscle Damage and Inflammation in Untrained Males N/A
Not yet recruiting NCT06134076 - Comparing Effects of Fermented and Unfermented Pulses and Gut Microbiota N/A
Not yet recruiting NCT06159543 - The Effects of Fresh Mango Consumption on Cardiometabolic Outcomes in Free-living Individuals With Prediabetes N/A