Clinical Trials Logo

Hypoxic-ischemic Encephalopathy clinical trials

View clinical trials related to Hypoxic-ischemic Encephalopathy.

Filter by:

NCT ID: NCT04337697 Recruiting - Stroke Clinical Trials

Neonatal Seizure Registry - Developmental Functional EValuation

NSR-DEV
Start date: March 15, 2020
Phase:
Study type: Observational [Patient Registry]

The NSR-DEV study is a longitudinal cohort study of around 280 Neonatal Seizure Registry participants that aims to evaluate childhood outcomes after acute symptomatic neonatal seizures, as well as examine risk factors for developmental disabilities and whether these are modified by parent well-being.

NCT ID: NCT03996317 Withdrawn - Clinical trials for Respiratory Distress Syndrome, Newborn

Maternal Hyperoxygenation for Intrapartum Fetal Heart Rate Tracing Abnormalities

Start date: June 2021
Phase: N/A
Study type: Interventional

Hyperoxygenation for resuscitation of abnormal fetal heart rate tracings has been routine obstetric practice. However, there have not been any studies to support this practice. Recent literature have either found no associated benefit to intrapartum maternal oxygen administration, or in a number of studies demonstrated higher risk of neonatal complications. Despite these studies, the evidences have not been adequate to change the clinical practice because the majority of these studies either focused on biological differences rather than clinical outcomes data or were retrospective rather than randomized trials. Therefore, the investigators propose a large single center randomized clinical trial to determine the effects of maternal hyperoxygenation therapy for the treatment of fetal heart rate tracing abnormalities.

NCT ID: NCT03913221 Active, not recruiting - Clinical trials for Hypoxic-Ischemic Encephalopathy

Caffeine for Hypoxic-Ischemic Encephalopathy

Start date: July 12, 2019
Phase: Phase 1
Study type: Interventional

Hypoxic-ischemic encephalopathy (HIE) due to perinatal asphyxia is common and often fatal. Therapeutic hypothermia reduces mortality and morbidity in infants with HIE. Even with the widespread use of therapeutic hypothermia, ~60% of infants with HIE die or have neurodevelopmental impairment. As a result, there is an urgent, unmet public health need to develop adjuvant therapies to improve survival and neurodevelopmental outcomes in this population. Caffeine may offer neuroprotection for infants with HIE by blocking adenosine receptors in the brain and reducing neuronal cell death. In animal models of HIE, caffeine reduces white matter brain injury. Drugs in the same class as caffeine (i.e., methylxanthines) have been shown to be protective against acute kidney injury in the setting of HIE. However, their safety and efficacy have not been studied in the setting of therapeutic hypothermia and their effect on neurological outcomes is not known. Since these drugs reduce injury to the kidney in infants with HIE, they may also reduce injury to the brain. This phase I study will evaluate the pharmacokinetics, safety, and preliminary effectiveness of caffeine as an adjuvant therapy to improve neurodevelopmental outcomes in infants with HIE.

NCT ID: NCT03837717 Completed - Clinical trials for Hypoxic-Ischemic Encephalopathy

The Impact of Holding on Stress and Bonding in Mother-Infant Pairs During Therapeutic Hypothermia

Start date: December 4, 2018
Phase: N/A
Study type: Interventional

This research is being done to try to improve the experience of mothers and babies during therapeutic hypothermia. Currently, mothers are not able to hold their baby during hypothermia treatment. Mothers have reported that not being able to hold their baby during this time is stressful. Additionally, it is known that holding has many benefits for mothers' and babies' psychological and physical health. Therapeutic hypothermia is the standard of care. The experimental interventions of this study are to have mothers hold their babies during this treatment, collect saliva samples from mothers and babies, and test the saliva samples for the hormones cortisol and oxytocin. The investigators will test saliva of infants and their mothers before and after holding. The investigators hope to demonstrate decreased cortisol, a marker for stress, and increased oxytocin, a marker for bonding, in infants and mothers while they are held during therapeutic hypothermia.

NCT ID: NCT03806816 Recruiting - Clinical trials for Hypoxic-Ischemic Encephalopathy

Use of Melatonin for Neuroprotection in Asphyxiated Newborns

MELPRO
Start date: December 13, 2018
Phase: N/A
Study type: Interventional

Protection of brain development is a major aim in the Neonatal Intensive Care Unit. Hypoxic-Ischemic Encephalopathy (HIE) occurs in 3-5 per 1000 births. Only 47% of neonates have normal outcomes. The neurodevelopmental consequences of brain injury for asphyxiated term infants include cerebral palsy, severe intellectual disabilities and also a number of minor behavioural and cognitive deficits. However, there are very few therapeutic strategies for the prevention or treatment of brain damage. The gold standard is hypothermic treatment but, according to the literature, melatonin potentially acts in synergy with hypothermia for neuroprotection and to improve neurologic outcomes. Melatonin appears to be a good candidate because of its different protective effects including reactive oxygen species scavenging, excitotoxic cascade blockade, modulation of neuroinflammatory pathways. The research study will evaluate the neuroprotective properties and the effects of Melatonin in association with therapeutic hypothermia for hypoxic ischemic encephalopathy.

NCT ID: NCT03786497 Not yet recruiting - Clinical trials for Congenital Heart Disease

Protecting Brains and Saving Futures - the PBSF Protocol

PBSF
Start date: January 1, 2021
Phase:
Study type: Observational [Patient Registry]

Background: Multiple neonatal disorders are associated with risks of neurological injury. Thus, management of these infants should involve a coordinated approach to permit early diagnosis with improved clinical care. Such initiative involves the use of standardized protocols, continuous and specialized brain monitoring with electroencephalography (EEG), amplitude integrated EEG (aEEG) and Near Infrared Spectroscopy (NIRS), neuroimaging and training. Brazil is a very large country with disparities in health care assessment; some neonatal intensive care units (NICUs) are not well structured and trained to provide adequate neurocritical care. However, the development and implementation of these neurocritical care units requires high expertise and significant investment of time, manpower and equipment. In order to reduce the existing gap, a unique advanced telemedicine model of neurocritical care called Protecting Brains and Saving Futures (PBSF) protocol was developed and implemented in some Brazilian NICUs. Methods: A prospective observational cohort study will be conducted in 20 Brazilian NICUs that have adopted the PBSF protocol. All infants receiving the protocol during January 2021 to December 2023 will be eligible. Ethical approval will be obtained from the participating institutions. The primary objective is to describe the use of the PBSF protocol and clinical outcomes, by center and over a 3 years period. The use of the PBSF protocol will be measured by quantification of neuromonitoring, neuroimaging exams and sub-specialties consultation. Clinical outcomes of interest after the protocol implementation are length of hospital stay, detection of EEG seizures during hospitalization, use of anticonvulsants, inotropes, and fluid resuscitation, death before hospital discharge, and referral of patients to high-risk infant follow-up. These data will be also compared between infants with primarily neurologic and primarily clinical diagnosis. Discussion: The implementation of the PBSF protocol may provide adequate remote neurocritical care in high-risk infants with optimization of clinical management and improved outcomes. Data from this large, prospective, multicenter study are essential to determine whether neonatal neurocritical units can improve outcomes. Finally, it may offer the necessary framework for larger scale implementation and help in the development of studies of remote neuromonitoring.

NCT ID: NCT03682042 Recruiting - Clinical trials for Hypoxic-Ischemic Encephalopathy

Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Kountries Developmental Follow Up

CORDMILK-FU
Start date: October 17, 2022
Phase: N/A
Study type: Interventional

An extension of the CORDMILK trial, the CORDMILK follow-up trial will evaluate the neurodevelopmental outcomes at 22-26 months age of term/late preterm infants who were non-vigorous at birth and received umbilical cord milking (UCM) or early cord clamping (ECC).

NCT ID: NCT03681314 Withdrawn - Clinical trials for Hypoxic-Ischemic Encephalopathy

Umbilical Cord Milking in Neonates Who Are Depressed at Birth-Developmental Follow Up (MIDAB-FU)

MIDAB-FU
Start date: October 17, 2022
Phase: N/A
Study type: Interventional

An extension of the MIDAB trial, the MIDAB-Follow-up trial will evaluate the neurodevelopmental outcomes at 22-26 months age of term/late preterm infants who were depressed at birth and received umbilical cord milking (UCM) or immediate cord clamping (ICC).

NCT ID: NCT03657394 Recruiting - Clinical trials for Hypoxic-Ischemic Encephalopathy

Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Kountries

CORDMILK
Start date: October 17, 2022
Phase: N/A
Study type: Interventional

The investigators will conduct a study on non-vigorous infants at birth to determine if umbilical cord milking (UCM) results in lower rate of moderate to severe hypoxic ischemic encephalopathy (HIE) or death than early clamping and for infants who are non-vigorous at birth and need immediate resuscitation.

NCT ID: NCT03640494 Completed - Clinical trials for Hypoxic-Ischemic Encephalopathy

Bedside Optical Retinal Assessment of Hypoxic Ischemic Encephalopathy in Infants

Start date: August 28, 2018
Phase:
Study type: Observational

The purpose of this study is to develop a novel noninvasive bedside optical coherence tomography (OCT) imaging technique in newborn infants with HIE that improves our ability to assess the range of retinal effects from HIE and to diagnose and monitor treatments of HIE.