Clinical Trials Logo

Hypoxia-Ischemia, Brain clinical trials

View clinical trials related to Hypoxia-Ischemia, Brain.

Filter by:

NCT ID: NCT05687708 Completed - Clinical trials for Hypoxic-Ischemic Encephalopathy

Effect of Non-nutritive Sucking on Transition to Oral Feeding in Infants With Asphyxia

Start date: November 1, 2021
Phase: N/A
Study type: Interventional

The transition period to full oral feeding in infants with perinatal asphyxia is important in predicting long-term outcomes. The transition to independent oral feeding is accepted as a discharge criterion by the American Academy of Pediatrics, and the long transition from tube feeding to oral feeding prolongs the discharge process. Prolonged transition to oral feeding increases maternal stress as it delays gastrointestinal problems, mother-infant interaction and attachment, as well as increasing health expenditures. Due to long-term feeding tube use; Infection, leakage, delay in wound healing, trauma caused by repeated placement, as well as oral reluctance are observed. In asphyxia infants, in whom oral-motor dysfunction is common, the transition to oral feeding takes a long time and tube feeding support is required. The effect of hypothermia, which is a general therapeutic intervention that reduces the risk of mortality and morbidity in infants with asphyxia, on oral feeding has been previously studied and shown to have a positive effect. They also found that MR imaging in infants with asphyxia and the need for gastrostomy and tube feeding in those with brainstem involvement were associated. Various interventions that affect the transition to oral nutrition positively and shorten the discharge time are included in the literature. Stimulation of non-nutritive sucking (NNS) is the most frequently preferred method among these interventions. It has been shown in studies that there are no short-term negative effects of NNS stimulation with the help of a pacifier or gloved finger, and some clinical benefits such as better bottle feeding performance, acceleration of discharge and transition to oral feeding. The effect of the NNS stimulation method, which has been shown to be effective in preterm infants with large-scale randomized controlled studies, is not known exactly. The aim of this study is to examine the effect of NNS stimulation applied to oral feeding, feeding skills, weight gain and discharge in asphyxia infants receiving hypothermia treatment.

NCT ID: NCT05648812 Not yet recruiting - Clinical trials for Neonatal Hypoxic Ischemic Encephalopathy

Neonatal Brain Ultrasound With CEUS and Elastography

Start date: May 2023
Phase: Phase 3
Study type: Interventional

The aim of our study is to investigate changes of brain perfusion and elasticity in neonates during the time that a neonate is adapting to live outside the womb and during diseases that are suspected to affect neonatal brain perfusion. We use contrast enhanced ultrasound (sulphur hexafluoride) and ultrasound-assisted elastography to evaluate the state of brain perfusion. We will study neonates recruited from the Neonatal Units of Turku University Hospital.

NCT ID: NCT05621590 Completed - Clinical trials for Hypoxic Ischaemic Encephalopathy Due to Cardiac Arrest

MLC901 in Hypoxic-ischemic Brain Injury Patients; A Double-blind, Randomized Placebo-controlled Trial

Start date: March 10, 2020
Phase: Early Phase 1
Study type: Interventional

In a randomized, placebo-controlled trial, 35 patients with HIBI were randomly designated to receive either MLC901 or placebo capsules over six months. We evaluated patients in two groups by modified Rankin Scale (mRS) and Glasgow outcome scale (GOS) to examine their state of disability and recovery

NCT ID: NCT05610085 Recruiting - Clinical trials for Hypoxic-Ischemic Encephalopathy

A Dose Escalation Study of Levetiracetam in the Treatment of Neonatal Seizures

NEOLEV3
Start date: March 24, 2023
Phase: Phase 2
Study type: Interventional

The main purpose of this study is to determine the maximum safe tolerated dose of LEV in the treatment of neonatal seizures. Our hypothesis is that optimal dosing of Levetiracetam (LEV) to treat neonatal seizures is significantly greater than 60mg/kg. This study will be an open label dose-escalation, preliminary safety and efficacy study. There will be a randomized control treatment component. Infants recognized as having neonatal seizures or as being at risk of developing seizures will be recruited and started on continuous video EEG monitoring (CEEG). Eligibility will be confirmed and consent will be obtained. In the first 2 phases of the study, neurologists will identify neonates with mild-moderate seizure burden (less than 8 minutes cumulative seizure activity per hour), appropriate for study with LEV, and exclude patients with higher seizure burden where treatment with PHB is more appropriate. Phase 3 of the dose escalation will only proceed if additional efficacy of LEV has been demonstrated in phases 1 and 2. In Phase 3 we will recruit neonates with seizures of greater severity up to 30 minute seizure burden/hour. This will make the final results of study more generalizable. If seizures are confirmed, enrolled subjects will receive 60mg/kg of LEV. Subjects whose seizures persist or recur 15 minutes after the first infusion is complete, subjects will then be randomized in the dose escalation study. Patients in the dose escalation study will be randomly assigned to receive either higher dose LEV or treatment with the control drug PHB in a 3:1 allocation ratio, stratified by site. Funding Source- FDA OOPD

NCT ID: NCT05590676 Terminated - Premature Birth Clinical Trials

Metformin Treatment in Infants After Perinatal Brain Injury

Start date: May 2, 2023
Phase: Phase 1
Study type: Interventional

A phase I study to test the feasibility and safety of treatment with metformin in infants affected by hypoxic ischemic encephalopathy (HIE) or prematurity-related brain injury

NCT ID: NCT05588960 Recruiting - Clinical trials for Neonatal Encephalopathy

Investigating Cerebral Oxygenation in the Newborn

ICON
Start date: July 21, 2023
Phase:
Study type: Observational

The goal of this single centre observational study is to use near-infrared spectroscopy (NIRS) monitoring to investigate cerebral oxygenation in two groups of newborn infants who are at high risk of brain injury. The NIRS monitor used in this study will be the Masimo O3 regional oximeter with neonatal sensors. Near-infrared spectroscopy (NIRS) monitoring uses near-infrared light to measure oxygen levels in the brain tissue (cerebral oxygenation). It provides information about blood flow to the brain and the balance between oxygen supply and demand in the brain tissue. It is non-invasive, safe and used routinely to monitor term and premature babies in the neonatal intensive care unit (NICU). This study will recruit two groups of infants admitted to the NICU who are at risk of brain injury in the newborn period, namely: - Term and near-term babies who are undergoing cooling treatment (therapeutic hypothermia) for moderate to severe hypoxic ischaemic encephalopathy (HIE). - Preterm babies who are born extremely prematurely (before 28 weeks of pregnancy). In the term/near-term group, the primary aims of the study are: - To investigate if cerebral oxygenation during and after cooling treatment relates to markers of brain injury detected on detailed brain scans (MRI and MRS scans). - To describe any changes in cerebral oxygenation which occur during and after seizures (fits) in babies undergoing cooling treatment. In the preterm group, the primary aims of the study are: - To investigate if any changes in cerebral oxygenation occurring during skin-to-skin care are different in premature babies with brain injury (bleeding or cysts in the brain seen on ultrasound scan) compared to babies without these changes. - To investigate if cerebral oxygenation at 36 weeks corrected gestational age differs in babies with bronchopulmonary dysplasia (BDP, a chronic lung disease of prematurity) compared to babies without BPD.

NCT ID: NCT05581927 Withdrawn - Brain Injury Clinical Trials

Whole-Body Hypothermia for Neonates With Hypoxic-Ischemic Encephalopathy(HIE)

Start date: October 1, 2022
Phase: N/A
Study type: Interventional

Among term infants, hypoxic-ischemic encephalopathy due to acute perinatal asphyxia remains an important cause of brain injury in childhood. Infants with moderate encephalopathy have a 10 percent risk of death, and those who survive have a 30 percent risk of disabilities. Sixty percent of infants with severe encephalopathy die, and many, if not all, survivors are disabled. Whole-body hypothermia reduces the risk of death or disability in infants with moderate or severe hypoxic-ischemic encephalopathy.

NCT ID: NCT05568264 Recruiting - Premature Birth Clinical Trials

Effects of a Physical Therapy Intervention on Motor Delay in Infants Admitted to a Neonatal Intensive Care Unit

Start date: October 1, 2022
Phase: N/A
Study type: Interventional

Study Aims Pilot study: Due to the large recruitment goal and length of the project, the study team/PIs will evaluate the first cohort of 6-10 participants to refine study procedures and study-related materials. If no major modifications are made to the protocol as a result of this evaluation, data from these participants will be included for analysis. Aim 1: Evaluate the efficacy of an early, evidence-based, clinical experience-based therapeutic intervention (from the NICU to 12-months corrected age) on improving motor function and reducing severity of motor delays in infants at 12-months corrected age. The investigators hypothesize that the intervention group will demonstrate an average 8-point difference (0.5 standard deviation) compared to the standard of care group. [an 8-point difference is considered a clinically meaningful difference] Aim 2: Evaluate the early effects (i.e., before 12 months) of a therapeutic intervention, provided from NICU to 12-months corrected age, on motor function and severity of motor delay. The Investigators hypothesize that a statistically significant higher percentage of infants in the intervention group will demonstrate improved motor function and reduced severity of motor delays, compared to the standard of care group-assessed using sensors, the NSMDA and TIMP-as early as 3-months corrected age. Aim 3: Evaluate whether an early intervention that focuses on caregiver engagement improves caregiver well-being. The invetigators hypothesize that an intervention that focuses on supporting and addressing the individual needs of the caregiver will improve caregiver well-being. The investigators will evaluate these effects using the PedsQL (Family Impact Module).

NCT ID: NCT05520359 Recruiting - Stroke Clinical Trials

Spinal Stimulation and Mobility Devices

Start date: August 4, 2022
Phase: N/A
Study type: Interventional

This research study will combine non-invasive spinal stimulation with mobility devices to examine the acute impact of the individual and combined effects of these innovative techniques on mobility in children with cerebral palsy.

NCT ID: NCT05514665 Not yet recruiting - Clinical trials for Hypoxic-Ischemic Encephalopathy

Functional Imaging of Baby Brains

FIBB
Start date: March 2024
Phase:
Study type: Observational

Infants are at risk of developing motor and cognitive neurodevelopmental disabilities as a sequelae to hypoxic-ischemic brain injury during the perinatal period. It is an ongoing challenge to predict the severity and extent of future developmental impairment during the neonatal period. This study will help test the feasibility of conducting a large-scale study that evaluates the role of diffuse optical tomography as a bedside neuroimaging tool in complementing the prognostic value of conventional and diffusion weighted MRI for predicting neurodevelopmental outcome in neonates with perinatal hypoxic-ischemic brain injury.