Clinical Trials Logo

Clinical Trial Summary

Human heart failure (HF) has been associated with reduced cardiac sodium channel current and other electrical remodeling. Recently, the investigators have shown that downregulation of cardiac Na+ channels (SCN5A) can contribute to arrhythmic risk and that upregulation can mitigate that risk. Furthermore, the investigators have shown that the reduction in cardiac SCN5A mRNA abundance is reflected in circulating white blood cells (WBCs), which also express SCN5A, and that a reduction in SCN5A is highly predictive of appropriate implanted cardiac defibrillator (ICD) therapy. These data suggest that SCN5A regulation contributes to arrhythmic risk in HF. Other electrical remodeling events thought to contribute to arrhythmic risk include reductions in K+ currents, including Ito, IK1 and IKs are responsible. These current reductions have been linked to reduced transcription, translation and expression of the corresponding channel subunits, such as Kv4.3, Kir2.1, KvLQT1, and accessory proteins including minK and K+ channel interacting protein 2. That all these ion channels are downregulated may suggest a common mechanism to reduce ion channel expression. In this application, the investigators intend to explore an entirely novel mechanism by which SCN5A and other ion channel mRNA abundances are reduced in HF.


Clinical Trial Description

Altered gene expression has been traditionally focused on transcriptional regulation. Nevertheless, recent large-scale analyses have revealed that as many as half of all changes in the amounts of mRNA in responses to cellular signals can be attributed to altered rates of mRNA decay. In preliminary data, we show that HuR, a member of a class of RNA stabilizing proteins that bind to AU-rich elements (ARE), is expressed in the heart and contributes to Na+ channel mRNA stability by binding to SCN5A transcript. Furthermore, HuR appears to be downregulated in human HF, perhaps contributing to the downregulation of ion channels and increased arrhythmic risk seen in HF. We propose that HuR is downregulated in HF, that this downregulation contributes to reduced Na+ and other currents and increased arrhythmic risk, and that upregulation of HuR will reduce ion channel downregulations and arrhythmic risk in HF. The investigators specific aims are: Aim 1: Determine the extent to which HuR can regulate ion currents in cardiomyocytes. Aim 2: Determine the relative contributions of known ion channel posttranscriptional control mechanisms. Aim 3: Determine the mechanism and extent to which HuR activity is downregulated in ischemic and nonischemic cardiomyopathy and the correlation with ion channel mRNA, protein, and current. Aim 4: Determine the extent to which overexpression of HuR can raise ion channel mRNA, raise ion channel current, and reduce arrhythmic risk in ischemic and nonischemic cardiomyopathy. Please be notified that only Aim 2 involves the usage of de-identified human heart samples. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03313882
Study type Observational
Source University of Minnesota
Contact
Status Completed
Phase
Start date August 2011
Completion date August 1, 2021

See also
  Status Clinical Trial Phase
Recruiting NCT05654272 - Development of CIRC Technologies
Recruiting NCT05650307 - CV Imaging of Metabolic Interventions
Recruiting NCT05196659 - Collaborative Quality Improvement (C-QIP) Study N/A
Active, not recruiting NCT05896904 - Clinical Comparison of Patients With Transthyretin Cardiac Amyloidosis and Patients With Heart Failure With Reduced Ejection Fraction N/A
Completed NCT05077293 - Building Electronic Tools To Enhance and Reinforce Cardiovascular Recommendations - Heart Failure
Recruiting NCT05631275 - The Role of Bioimpedance Analysis in Patients With Chronic Heart Failure and Systolic Ventricular Dysfunction
Enrolling by invitation NCT05564572 - Randomized Implementation of Routine Patient-Reported Health Status Assessment Among Heart Failure Patients in Stanford Cardiology N/A
Enrolling by invitation NCT05009706 - Self-care in Older Frail Persons With Heart Failure Intervention N/A
Recruiting NCT04177199 - What is the Workload Burden Associated With Using the Triage HF+ Care Pathway?
Terminated NCT03615469 - Building Strength Through Rehabilitation for Heart Failure Patients (BISTRO-STUDY) N/A
Recruiting NCT06340048 - Epicardial Injection of hiPSC-CMs to Treat Severe Chronic Ischemic Heart Failure Phase 1/Phase 2
Recruiting NCT05679713 - Next-generation, Integrative, and Personalized Risk Assessment to Prevent Recurrent Heart Failure Events: the ORACLE Study
Completed NCT04254328 - The Effectiveness of Nintendo Wii Fit and Inspiratory Muscle Training in Older Patients With Heart Failure N/A
Completed NCT03549169 - Decision Making for the Management the Symptoms in Adults of Heart Failure N/A
Recruiting NCT05572814 - Transform: Teaching, Technology, and Teams N/A
Enrolling by invitation NCT05538611 - Effect Evaluation of Chain Quality Control Management on Patients With Heart Failure
Recruiting NCT04262830 - Cancer Therapy Effects on the Heart
Completed NCT06026683 - Conduction System Stimulation to Avoid Left Ventricle Dysfunction N/A
Withdrawn NCT03091998 - Subcu Administration of CD-NP in Heart Failure Patients With Left Ventricular Assist Device Support Phase 1
Recruiting NCT05564689 - Absolute Coronary Flow in Patients With Heart Failure With Reduced Ejection Fraction and Left Bundle Branch Block With Cardiac Resynchronization Therapy