Clinical Trials Logo

Clinical Trial Details — Status: Withdrawn

Administrative data

NCT number NCT03788707
Other study ID # 1368341
Secondary ID
Status Withdrawn
Phase N/A
First received
Last updated
Start date May 1, 2019
Est. completion date December 1, 2021

Study information

Verified date July 2021
Source Augusta University
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Predicting fluid responsiveness in critically ill patients is of paramount importance. It can help define an adequate fluid balance. Overzealous fluid administration is poorly tolerated and has been associated with poor outcomes but so has insufficient administration. Currently available predictors of fluid responsiveness rely on invasive monitors and require patients to be on mechanical ventilation. It is thus important to develop non invasive novel methods to assess fluid responsiveness to provide an accurate management for a favorable outcome. We propose a readily available non-invasive method that relies on improvement of the ventilation perfusion mismatch as recorded by end tidal CO2. Ventilation of physiologic dead space is part of a spectrum of mismatch between ventilation and perfusion of the lungs. The extent of pulmonary dead space varies depending on factors affecting pulmonary perfusion (e.g. pulmonary capillary hydrostatic pressure) and alveolar pressure (e.g. positive pressure ventilation). Compromised pulmonary capillary perfusion can lead to ventilation-perfusion mismatch in a patient with clear conductive airway and adequate alveolar oxygen pressure. Alveolar dead space results in decreased CO2 exchange that translates into lower levels of expired CO2. Stroke volume of the right ventricle is a major determinant of the pulmonary capillary perfusion. Right ventricular cardiac output can be increased by passive lower limb elevation maneuver, which ultimately results in improvement of the ventilation to perfusion ratio. This effect leads to a higher participation of perfused (and ventilated) alveolar units in gas exchange and narrowing of the gradient between arterial and expired CO2 concentration. Performing a passive leg raising (PLR) maneuver leads to stroke volume enhancement in both healthy patients and in those experiencing hemodynamic instability. Responsiveness to PLR can be assessed by different methods including echocardiography and pulse pressure variation. Left ventricular cardiac output (LVCO) can be easily measured by transthoracic echo and be used as a surrogate of right ventricular preload changes. LVCO can thus be used to assess the fluid responsiveness of PLR and the effects of on end tidal CO2 that ensue. We propose this study to test the hypothesis that expired CO2 is a reliable predictor of fluid responsiveness after performance of the PLR maneuver, based on the assumption that increasing right ventricular output causes a reduction of the ventilation to perfusion ratio, leading to increased levels of expired CO2. T


Recruitment information / eligibility

Status Withdrawn
Enrollment 0
Est. completion date December 1, 2021
Est. primary completion date December 1, 2021
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Age older than 18 years Exclusion Criteria: - Cardiovascular and respiratory disease reported by the participant

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Passive leg raising
After 30 seconds of lying flat, volunteers will have passive leg raising to 45 degrees. Expired CO2 will be measured via a face mask before and after leg raising.

Locations

Country Name City State
United States Augusta University Augusta Georgia

Sponsors (1)

Lead Sponsor Collaborator
Augusta University

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Expired CO2 Area under the curve of a capnogram tracing will be measured in milimiters 10 minutes
Secondary Mean arterial pressure Mean arterial pressure in mmHg measured by non invasive oscillometer 10 minutes
Secondary Heart rate beats per minute measured by non invasive plethysmography 10 minutes
See also
  Status Clinical Trial Phase
Recruiting NCT06052553 - A Study of TopSpin360 Training Device N/A
Completed NCT05511077 - Biomarkers of Oat Product Intake: The BiOAT Marker Study N/A
Recruiting NCT04632485 - Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
Completed NCT05931237 - Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults N/A
Terminated NCT04556032 - Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women N/A
Completed NCT04527718 - Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers Phase 1
Completed NCT04107441 - AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects Phase 1
Completed NCT04065295 - A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225 Phase 1
Completed NCT04998695 - Health Effects of Consuming Olive Pomace Oil N/A
Completed NCT01442831 - Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects Phase 1
Terminated NCT05934942 - A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood Phase 1
Recruiting NCT05525845 - Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI N/A
Completed NCT05515328 - A Study in Healthy Men to Test How BI 685509 is Processed in the Body Phase 1
Completed NCT04967157 - Cognitive Effects of Citicoline on Attention in Healthy Men and Women N/A
Completed NCT05030857 - Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects Phase 1
Recruiting NCT04494269 - A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls Phase 1
Recruiting NCT04714294 - Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers Phase 1
Completed NCT04539756 - Writing Activities and Emotions N/A
Recruiting NCT04098510 - Concentration of MitoQ in Human Skeletal Muscle N/A
Completed NCT03308110 - Bioavailability and Food Effect Study of Two Formulations of PF-06650833 Phase 1