Clinical Trials Logo

Ependymoma clinical trials

View clinical trials related to Ependymoma.

Filter by:

NCT ID: NCT04958486 Recruiting - Fossa Ependymoma Clinical Trials

Combination Intraventricular Chemotherapy Pilot Study: 5-Azacytidine (5-AZA) and Trastuzumab Infusions Into the Fourth Ventricle or Resection Cavity in Children and Adults With Recurrent or Residual Posterior Fossa Ependymoma

Start date: July 8, 2021
Phase: Early Phase 1
Study type: Interventional

The purpose of this study is to establish the safety and tolerability of simultaneous infusions of 5-Azacytidine and trastuzumab into the fourth ventricle of the brain or resection cavity in patients with recurrent posterior fossa ependymoma and to assess the antitumor activity of simultaneous infusions of 5-Azacytidine and trastuzumab into the fourth ventricle of the brain or resection cavity in patients based upon imaging studies and lumbar cerebrospinal fluid (CSF) cytology.

NCT ID: NCT04903080 Recruiting - Ependymoma Clinical Trials

HER2-specific Chimeric Antigen Receptor (CAR) T Cells for Children With Ependymoma

Start date: July 27, 2022
Phase: Phase 1
Study type: Interventional

This is a Phase I study to evaluate the safety profile of a type of immune therapy called HER2 CAR T cells (short for HER2 chimeric antigen receptor T cells). In addition to looking for side effects, we will study how well this treatment works against a brain tumor called ependymoma that has come back after treatment (recurrent) or has not responded well to treatment (progressive) in children. The HER2 CAR T cells used in this trial are made from the patient's own blood. A new gene, called the HER2 CAR, will be inserted into patient's T cells to allow them recognize a protein on the tumor called HER2. These HER2-specific CAR T cells may be able to target and kill ependymoma tumors that express HER2. This research is also studying how doable it is to provide this type of CAR T cell treatment to children being treated at different hospitals.

NCT ID: NCT04732065 Recruiting - Glioblastoma Clinical Trials

ONC206 for Treatment of Newly Diagnosed, Recurrent Diffuse Midline Gliomas, and Other Recurrent Malignant CNS Tumors

PNOC023
Start date: August 23, 2021
Phase: Phase 1
Study type: Interventional

This phase I trial studies the effects and best dose of ONC206 alone or in combination with radiation therapy in treating patients with diffuse midline gliomas that is newly diagnosed or has come back (recurrent) or other recurrent primary malignant CNS tumors. ONC206 is a recently discovered compound that may stop cancer cells from growing. This drug has been shown in laboratory experiments to kill brain tumor cells by causing a so called "stress response" in tumor cells. This stress response causes cancer cells to die, but without affecting normal cells. ONC206 alone or in combination with radiation therapy may be effective in treating newly diagnosed or recurrent diffuse midline gliomas and other recurrent primary malignant CNS tumors.

NCT ID: NCT04661384 Recruiting - Glioblastoma Clinical Trials

Brain Tumor-Specific Immune Cells (IL13Ralpha2-CAR T Cells) for the Treatment of Leptomeningeal Glioblastoma, Ependymoma, or Medulloblastoma

Start date: March 5, 2021
Phase: Phase 1
Study type: Interventional

This phase I trial investigates the side effects of brain tumor-specific immune cells (IL13Ralpha2-CAR T cells) in treating patients with leptomeningeal disease from glioblastoma, ependymoma, or medulloblastoma. Immune cells are part of the immune system and help the body fight infections and other diseases. Immune cells can be engineered to destroy brain tumor cells in the laboratory. IL13Ralpha2-CAR T cells is brain tumor specific and can enter and express its genes in immune cells. Giving IL13Ralpha2-CAR T cells may better recognize and destroy brain tumor cells in patients with leptomeningeal disease from glioblastoma, ependymoma or medulloblastoma.

NCT ID: NCT04648462 Recruiting - Adenoma Clinical Trials

Proton Therapy Research Infrastructure- ProTRAIT- Neuro-oncology

Start date: January 1, 2018
Phase:
Study type: Observational [Patient Registry]

The first proton therapy treatments in the Netherlands have taken place in 2018. Due to the physical properties of protons, proton therapy has tremendous potential to reduce the radiation dose to the healthy, tumour-surrounding tissues. In turn, this leads to less radiation-induced complications, and a decrease in the formation of secondary tumours. The Netherlands has spearheaded the development of the model-based approach (MBA) for the selection of patients for proton therapy when applied to prevent radiation-induced complications. In MBA, a pre-treatment in-silico planning study is done, comparing proton and photon treatment plans in each individual patient, to determine (1) whether there is a significant difference in dose in the relevant organs at risk (ΔDose), and (2) whether this dose difference translates into an expected clinical benefit in terms of NormalTissue Complication Probabilities (ΔNTCP). To translate ΔDose into ΔNTCP, NTCP-models are used, which are prediction models describing the relation between dose parameters and the likelihood of radiation-induced complications. The Dutch Society for Radiotherapy and Oncology (NVRO) setup the selection criteria for proton therapy in 2015, taking into account toxicity and NTCP. However, NTCP-models can be affected by changes in the irradiation technique. Therefore, it is paramount to continuously update and validate these NTCP-models in subsequent patient cohorts treated with new techniques. In ProTRAIT, a Findable, Accessible, Interoperable and Reusable (FAIR)data infrastructure for both clinical and 3D image and 3D dose information has been developed and deployed for proton therapy in the Netherlands. It allows for a prospective, standardized, multi-centric data from all Dutch proton and a representative group of photon therapy patients.

NCT ID: NCT04541082 Recruiting - Glioblastoma Clinical Trials

Phase I Study of Oral ONC206 in Recurrent and Rare Primary Central Nervous System Neoplasms

Start date: October 26, 2020
Phase: Phase 1
Study type: Interventional

The primary objective of this Phase 1, open-label, dose-escalation, and exploratory study is to evaluate the safety and tolerability profile (establish the maximum-tolerated dose) and evaluate the occurrence of dose-limiting toxicities (DLTs) following single weekly or multiple-day weekly dose regimens of single-agent, oral ONC206 in patients with recurrent, primary central nervous system (CNS) neoplasms.

NCT ID: NCT04374305 Recruiting - Meningioma Clinical Trials

Innovative Trial for Understanding the Impact of Targeted Therapies in NF2-Related Schwannomatosis (INTUITT-NF2)

INTUITT-NF2
Start date: June 20, 2020
Phase: Phase 2
Study type: Interventional

This is a multi-arm phase II platform-basket screening study designed to test multiple experimental therapies simultaneously in patients with NF2-related schwannomatosis (NF2-SWN, formerly known as neurofibromatosis type 2) with associated progressive tumors of vestibular schwannomas (VS), non-vestibular schwannomas (non-VS), meningiomas, and ependymomas. This Master Study is being conducted as a "basket" study that may allow people with multiple tumor types associated with NF2-SWN to receive new drugs throughout this study. Embedded within the Master Study are individual drug substudies. - Investigational Drug Sub-study A: Brigatinib - Investigational Drug Sub-study B: Neratinib

NCT ID: NCT04185038 Recruiting - Glioma Clinical Trials

Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for Diffuse Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory Pediatric Central Nervous System Tumors

Start date: December 11, 2019
Phase: Phase 1
Study type: Interventional

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells lentivirally transduced to express a B7H3-specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor resection cavity or ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meeting none of the exclusion criteria, will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets B7H3-expressing tumor cells. Patients will be assigned to one of 3 treatment arms based on location or type of their tumor. Patients with supratentorial tumors will be assigned to Arm A, and will receive their treatment into the tumor cavity. Patients with either infratentorial or metastatic/leptomeningeal tumors will be assigned to Arm B, and will have their treatment delivered into the ventricular system. The first 3 patients enrolled onto the study must be at least 15 years of age and assigned to Arm A or Arm B. Patients with DIPG will be assigned to Arm C and have their treatment delivered into the ventricular system. The patient's newly engineered T cells will be administered via the indwelling catheter for two courses. In the first course patients in Arms A and B will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Patients in Arm C will receive a dose of CAR T cells every other week for 3 weeks, followed by a week off, an examination period, and then dosing every other week for 3 weeks. Following the two courses, patients in all Arms will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of B7H3-specific CAR T cells can be manufactured to complete two courses of treatment with 3 or 2 doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that B7H3-specific CAR T cells can safely be administered through an indwelling CNS catheter or delivered directly into the brain via indwelling catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study. Secondary aims of the study will include evaluating CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple timepoints are available, also evaluate disease response to B7-H3 CAR T cell locoregional therapy.

NCT ID: NCT04049669 Recruiting - Glioblastoma Clinical Trials

Pediatric Trial of Indoximod With Chemotherapy and Radiation for Relapsed Brain Tumors or Newly Diagnosed DIPG

Start date: October 2, 2019
Phase: Phase 2
Study type: Interventional

Indoximod was developed to inhibit the IDO (indoleamine 2,3-dioxygenase) enzymatic pathway, which is important in the natural regulation of immune responses. This potent immune suppressive mechanism has been implicated in regulating immune responses in settings as diverse as infection, tissue/organ transplant, autoimmunity, and cancer. By inhibiting the IDO pathway, we hypothesize that indoximod will improve antitumor immune responses and thereby slow the growth of tumors. The central clinical hypothesis for the GCC1949 study is that inhibiting the pivotal IDO pathway by adding indoximod immunotherapy during chemotherapy and/or radiation is a potent approach for breaking immune tolerance to pediatric tumors that will improve outcomes, relative to standard therapy alone. This is an NCI-funded (R01 CA229646, MPI: Johnson and Munn) open-label phase 2 trial using indoximod-based combination chemo-radio-immunotherapy for treatment of patients age 3 to 21 years who have progressive brain cancer (glioblastoma, medulloblastoma, or ependymoma), or newly-diagnosed diffuse intrinsic pontine glioma (DIPG). Statistical analysis will stratify patients based on whether their treatment plan includes up-front radiation (or proton) therapy in combination with indoximod. Central review of tissue diagnosis from prior surgery is required, except non-biopsied DIPG. This study will use the "immune-adapted Response Assessment for Neuro-Oncology" (iRANO) criteria for measurement of outcomes. Planned enrollment is up to 140 patients.

NCT ID: NCT03750513 Recruiting - Ependymoma Clinical Trials

LET Optimized IMPT in Treating Pediatric Patients With Ependymoma

Start date: April 1, 2019
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects of linear energy transfer (LET) optimized image modulated proton therapy (IMPT) in treating pediatric patients with ependymoma. Radiation therapy such as LET optimized IMPT, uses proton beams to kill tumor cells and shrink tumors without damaging surrounding normal tissues.