Clinical Trials Logo

Clinical Trial Summary

In this cross-sectional clinical study, we will examine the bones of 111 Type 1 Diabetes (T1D) patients and 37 age-matched healthy controls with the aim of describing a T1D Bone Phenotype. The main Objectives of the study is a) to determine if the material properties of the bones are affected in diabetic bone disease and b) to determine if the mitochondrial function in osteoclasts and osteoblasts is impaired in T1D. Secondary end points are c) to establishment of the T1D bone phenotype and d) to investigate if mitochondrial dysfunction in T1D bone cells correlates to changes in gene expression, gene activity, bone remodelling, bone density, microarchitecture, geometry and material properties. Furthermore, in terms of contributing to knowledge on etiology and pathology of type one diabetic bone disease, we will study the predictory value of muscle mass in T1D patients and controls, as well as other characteristics such as heart rate variability (HRV) and AGE content. Furthermore, we will study the epidemiology of osteoporosis and fractures in Danish T1D patients. To assess the material properties of the bones, we will measure the bone mass density (BMD), use High Resolution peripheral Quantitative Computed Tomography (HRpQCT) for assessment of the microarchitecture and finite element analysis of bone strength, and by microindentation, we will obtain direct measures of the strength of the cortical bone of the tibia. Further we will measure bone turnover markers and circulating microRNA and in a subgroup of participants (24 T1D, 12 controls) bone samples will be retrieved for examination of bone histomorphometry (structural and static parameters) and cell samples from blood and bone marrow will be used for in vitro experiments focused on cell differentiation mitochondrial function, as hyperglycemia may affect mitochondrial function. Finally measures of some possible predictors of bone fragility in subjects with T1D are examined (sarcopenia, skin advanced glycation end products (AGE) content, autonomic neuropathy)


Clinical Trial Description

Methods The project consists of a cross-sectional case-control study bone histology, density and strength in adult T1D patients and in vitro studies of bone cell metabolism, including mitochondrial function in T1D. Participants 111 male and female patients aged 18-80 years with early onset T1D (diagnosed before age of 18) and 37 healthy age-, sex- and BMI-matched control subjects. Of those 24 cases and 12 controls are needed for studies on bone biopsies and bone marrow aspirates. Investigations Clinical data from digital medical records, survey and interview: c-peptide levels, medical history including information on diabetes-related complications, fracture history and concomitant medication. Blood samples: hemoglobin A1c, ionized calcium (Ca2+), parathyroid hormone (PTH), 25-hydroxycholecalciferol, Hemoglobulin, Leucocytes, platelets, creatinin, estimated glomerular filtration rate (eGFR), Alkaline phosphatase, Alanine transaminase, albumin, international normalized prothrombin ratio (INR). And possibly c-peptide and T1D-related antibodies on T1D subjects, may these results not be found in the medical records. Fasting serum levels of biochemical markers of bone resorption, bone formation and inhibition of bone formation: Cross-linked C-telopeptide of type I collagen (CTX) Procollagen-1 N-terminal peptide (P1NP), Sclerostin, fasting levels of circulating miRNAs reported to be associated with bone turnover will be measured using quantitative PCR (qPCR) by use of a LightCycler 480 instrument (will be sent to measurement in Vienna (Dr M Hackl, TamiRNA, Vienna, Austria)). For the participants that have accepted to have bone biopsy and marrow aspirate performed, we will measure Hemoglobulin, platelets, INR, activated partial thromboplastin time (APTT) 5 days prior to the biopsy. From these subjects, we will also obtain fullblood for: In vivo investigations on monocytes (osteoclastogenesis) and Resorption assays. Dual-energy X-ray Absorptiometry (DXA) scan will provide BMD at the hip and spine as well as Trabecular Bone Score (TBS) and whole-body scan for a measure of muscle mass HR-pQCT at the distal radius and tibia, we will obtain: Bone geometry, Volumetric BMD, Bone microarchitecture, Bone strength. by microindentation using OsteoProbe®, we will measure the material strength index (BMSi), a measure of the bone hardness and stiffness. Bone biopsy: following bone labelling with oral tetracycline, an 8 mm trans iliac bone biopsy will be performed. Bone specimens will be plastic embedded and used for - Bone histomorphometry (structural, static and dynamic parameters) - Micro Finite Element Analysis (strength analysis) - Ultra-high resolution measurements on osteocytes (number, density and connections) - Immunohistochemistry and imaging for coupling factors and gene expression. Cryosectioned bone tissue will be used to perform spatial transcriptomics to assess the gene activity in bone-specific loci. A Bone marrow aspirate 10-15 ml will be secured and used to study bone cells: - Flowcytometric methods on in vitro studies on mesenchymal stem cells (MSCs) from bone marrow aspirates: expression, differentiation and proliferation to osteoblasts(OBs) and adipocytes. - Monocytes from peripheral blood will be used to study osteoclastogenesis and bone resorption activity - In vitro studies and proteomics of bone cell communication in co-cultures of OBs and osteoclast (OCs). - Single cell RNA sequencing will be performed to demonstrate gene signatures of MSCs, OBs and OCs in T1D patients and controls. - Determination of the metabolic profile (using the Seahorse Xfe96 Analyzer) and measurement of glucose uptake of MSCs, OBs and OCs in T1D patients and controls - Imaging of mitochondrial morphology using MitoTracker. - In situ hybridization and immunohistochemistry Outcome Differences between early onset T1D patients and healthy age-matched controls in following parameters and the relationship between these parameters in T1D patients: - BONE PHENOTYPE: Bone density, geometry, architecture, histomorphometry, ultra-high resolution measurements on osteocytes and finite element analysis (FEA) - calculated strength obtained from DXA scans, HRpQCT scans and from bone biopsies in a subgroup of the subjects and Bone hardness (Bone Score), measured by microindentation. - BONE METABOLISM: Levels of skinAGEs and levels of biochemical bone turnover markers and circulating miRNA's known to be related to bone turnover, dynamic measures from bone histomorphometry. Immunohistochemistry and -imaging on bone biopsies. In vitro analyses and other investigations on cells will produce outcomes on bone cell differentiation, proliferation and intercellular communication and coupling, bone cell gene signatures and metabolic profiles. • PREDICTION VALUES of heart rate variability (Can assessment with Vagus(TM), skin autofluorescence (by AGE Reader from Diagnoptics) and muscle mass (by DXA whole-body scan) and - strength (by hand grip strength measured by dynamometer) Data will be summarized using odds ratios, trend analysis and regression analysis, adjusting for potential confounders. Students t-test and Chi square tests will be applied for test of group comparison. Statistical analyses will be conducted in Excel® and STATA®. Power Calculation The total number of individuals that will be recruited is based on a previous study of bone strength in T2D patients (same method) showing bone material strength index (BMSi) of 78,2 (SD 7,5) in controls and 74,6 (SD 7,6) in T2D patients. With 111 T1D patients and 37 controls, the power of the study will be 80% to demonstrate a difference in bone strength of 4. The number of participants needed for the studies on cell metabolism is based on an expected between-group difference in basal respiration of 25% when using the Seahorse extracellular flux analyser. (Difference of 25% is similar to that observed in another cell type in T1D and non-T1D patients in an on-going study at Aarhus University). source data will be available on the scanners and as for other examinations, screenshots/photographs of result windows are saved in the encoded database, where the results are also typed in by hand. Local monitoring will be carried out. Standard Operating Procedures for examinations are followed by involved clinicians and investigators. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05673837
Study type Observational
Source Odense University Hospital
Contact
Status Active, not recruiting
Phase
Start date December 10, 2021
Completion date April 1, 2024

See also
  Status Clinical Trial Phase
Completed NCT04030091 - Pulsatile Insulin Infusion Therapy in Patients With Type 1 and Type 2 Diabetes Mellitus Phase 4
Terminated NCT03605329 - Evaluation of the Severity of Cardiovascular Autonomic Neuropathy in Type 1 Diabetic Patients With OSAS N/A
Completed NCT01696266 - An International Survey on Hypoglycaemia Among Insulin-treated Patients With Diabetes
Recruiting NCT06050642 - Study of the Impact of PROximity Support for Patients With Type 1 DIABetes Treated With an Insulin Pump or Closed Loop. N/A
Completed NCT05107544 - Metabolic, Physical Fitness and Mental Health Effects of High Intensity Interval Training (HIIT) in Adolescents With Type 1 Diabetes N/A
Active, not recruiting NCT04443153 - Adapting Diabetes Treatment Expert Systems to Patient in Type 1 Diabetes N/A
Completed NCT04569994 - A Study to Look at the Safety of NNC0363-0845 in Healthy People and People With Type 1 Diabetes Phase 1
Completed NCT04521634 - Glycaemic Variability in Acute Stroke
Completed NCT04089462 - Effects of Frequency and Duration of Exercise in People With Type 1 Diabetes A Randomized Crossover Study N/A
Completed NCT03143816 - Study Comparing Prandial Insulin Aspart vs. Technosphere Insulin in Patients With Type 1 Diabetes on Multiple Daily Injections: Investigator-Initiated A Real-life Pilot Study-STAT Study Phase 4
Completed NCT01892319 - An International Non-interventional Cohort Study to Evaluate the Safety of Treatment With Insulin Detemir in Pregnant Women With Diabetes Mellitus. Diabetes Pregnancy Registry
Recruiting NCT04039763 - RT-CGM in Young Adults at Risk of DKA N/A
Completed NCT04042207 - Diabeloop for Highly Unstable Type 1 Diabetes N/A
Not yet recruiting NCT06068205 - COMPARATIVE ANALYSIS OF THE MORPHO-MECHANICAL PROPERTIES OF RED BLOOD CELLS EXTRACTED FROM DIABETIC PATIENTS WITH AND WITHOUT MICROVASCULAR COMPLICATIONS
Recruiting NCT05909800 - Prolonged Remission Induced by Phenofibrate in Children Newly Diagnosed With Type 1 Diabetes. Phase 2
Active, not recruiting NCT04974528 - Afrezza® INHALE-1 Study in Pediatrics Phase 3
Completed NCT04530292 - Home Intervention and Social Precariousness in Childhood Diabetes N/A
Completed NCT05428943 - OPT101 in Type 1 Diabetes Patients Phase 1
Recruiting NCT03988764 - Monogenic Diabetes Misdiagnosed as Type 1
Completed NCT05597605 - The SHINE Study: Safety of Implant and Preliminary Performance of the SHINE SYSTEM in Diabetic Subjects N/A