Critical Care Clinical Trial
— BIATICHOfficial title:
The Effect of BIA Monitoring of Brainedemaontheneurological Prognosis of Supratentorial Massive Intracerebral Hemorrhage - A Randomized, Contrast,Multi-center Trial
Spontaneous cerebral hemorrhage (SICH) is a hemorrhage caused by the rupture of a blood vessel within the brain parenchyma that is non-traumatic. Its rapid onset and dangerous condition seriously threaten human health; it accounts for about 15% of strokes and 50% of stroke-related mortality. Hunan Province is recognized as one of the high incidence areas of cerebral hemorrhage in the world; according to statistics, the direct economic loss caused by cerebral hemorrhage in Hunan Province is more than 1 billion yuan per year, which should be paid great attention. A 30-day follow-up study of large-volume cerebral hemorrhage (defined as supratentorial hemorrhage greater than 30 ml, infratentorial greater than 5 ml, and thalamus and cerebellum greater than 15 ml) found that the morbidity and mortality rate of ICH with hemorrhage of 30-60 ml was as high as 44-74%, while the morbidity and mortality rate of ICH with hemorrhage of <30 ml was 19% and that of >60 ml was 91%. According to studies, the occurrence of hematoma occupancy and malignant cerebral edema in large-volume cerebral hemorrhage can lead to secondary malignant intracranial pressure elevation and subsequent secondary brain injury, which are the main factors of high morbidity and mortality and poor prognosis in patients with large-volume cerebral hemorrhage. Clinical monitoring and management is the key to treatment, and despite aggressive surgical treatment and anti-brain edema therapy, a large number of patients progress to malignant brain edema disease, leading to poor outcomes. Therefore, this project intends to conduct a multicenter clinical trial of non-invasive monitoring of large volume cerebral hemorrhage on the curtain in the Hunan region to explore the impact of non-invasive brain edema monitoring management based on bioelectrical impedance technology on patient prognosis; and to explore early biomarkers of malignant brain edema through metabolomic analysis and the mechanism of malignant brain edema occurrence through multi-omic analysis to provide data support for the clinical treatment application of malignant brain edema.
Status | Not yet recruiting |
Enrollment | 776 |
Est. completion date | January 31, 2024 |
Est. primary completion date | October 31, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 80 Years |
Eligibility | Inclusion Criteria: 1. Age >18 years old and Age <80 years old. 2. Diagnosed of a supratentorial spontaneous intracerebral hemorrhage. 3. Diagnosis of supratentorial large-volume cerebral hemorrhage by CT or other imaging and meeting the diagnostic criteria for large-volume cerebral hemorrhage(hemorrhage volume = 30 mL of supratentorial cerebral parenchymal hematoma volume according to the Coniglobus formula on the first CT scan at onset). 4. Admission to study hospital within 48 hours of the disease. 5. The family signed the informed consent. Exclusion Criteria: 1. traumatic cerebral hemorrhage, cerebral amyloid angiopathy(CAA), secondary cerebral hemorrhage due to other specific etiologies (aneurysm, vascular malformation, smoker's disease, coagulopathy, aneurysmal stroke, vasculitis, cerebral venous thrombosis, hemorrhagic cerebral infarction, etc.) 2. the presence of fixed bilateral dilated pupils on admission, no recovery of pupils after initial dehydration treatment, and very poor survival 3. patients with extremely unstable vital signs after admission, with extremely poor prognosis and those considered non-viable, and patients whose families have abandoned follow-up treatment 4. patients who are pregnant or lactating. 5. patients with bilateral temporal skin ulceration, or subcutaneous hematoma in which monitoring electrode placement cannot be implemented 6. the presence of other serious underlying diseases (intractable hypoxemia and circulatory failure with cardiopulmonary insufficiency that is difficult to correct by treatment, severe abnormal coagulation, severely reduced platelets, severe hepatic and renal insufficiency, combined neurodegenerative diseases, psychiatric diseases, autoimmune diseases, malignant tumors, thyroid diseases, etc.) 7. the patient is agitated, coughing or choking too frequently, unable to be sedated or has difficulty in handling. 8. those with mRS score > 2 before this onset. |
Country | Name | City | State |
---|---|---|---|
China | Brain Hospital of Hunan Province | Changsha | Hunan |
China | Changsha Eighth Hospital(Changsha Hospital of Traditional Chinese Medicine) | Changsha | Hunan |
China | Changsha Fourth Hospital | Changsha | Hunan |
China | Hunan Provincial People's Hospital | Changsha | Hunan |
China | The Third Xiangya Hospital of Central South University | Changsha | Hunan |
China | XiangYa School of Medicine | Changsha | Hunan |
Lead Sponsor | Collaborator |
---|---|
Xiangya Hospital of Central South University |
China,
Aiolfi A, Khor D, Cho J, Benjamin E, Inaba K, Demetriades D. Intracranial pressure monitoring in severe blunt head trauma: does the type of monitoring device matter? J Neurosurg. 2018 Mar;128(3):828-833. doi: 10.3171/2016.11.JNS162198. Epub 2017 May 26. — View Citation
Andrews PJ, Citerio G. Intracranial pressure. Part one: historical overview and basic concepts. Intensive Care Med. 2004 Sep;30(9):1730-3. Epub 2004 Jul 9. — View Citation
Bales JW, Bonow RH, Buckley RT, Barber J, Temkin N, Chesnut RM. Primary External Ventricular Drainage Catheter Versus Intraparenchymal ICP Monitoring: Outcome Analysis. Neurocrit Care. 2019 Aug;31(1):11-21. doi: 10.1007/s12028-019-00712-9. — View Citation
Bao YH, Liang YM, Gao GY, Pan YH, Luo QZ, Jiang JY. Bilateral decompressive craniectomy for patients with malignant diffuse brain swelling after severe traumatic brain injury: a 37-case study. J Neurotrauma. 2010 Feb;27(2):341-7. doi: 10.1089/neu.2009.104 — View Citation
Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GW, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, Rubiano AM, Shutter L, Tasker RC, Vavilala MS, Wilberger J, Wright DW, Ghajar J. Guidelines for the Management of Severe Traumatic Brain Injury, — View Citation
Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T; Global Neurotrauma Research Group. A trial of intracranial-pressure monitoring in traumatic b — View Citation
Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004 Jun;75(6):813-21. Review. — View Citation
Dallagiacoma S, Robba C, Graziano F, Rebora P, Hemphill JC, Galimberti S, Citerio G; SYNAPSE-ICU Investigators. Intracranial Pressure Monitoring in Patients With Spontaneous Intracerebral Hemorrhage: Insights From the SYNAPSE-ICU Study. Neurology. 2022 Ju — View Citation
Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011 Jul;37(7):1059-68. doi: 10.1007/s00134- — View Citation
Fernando SM, Tran A, Cheng W, Rochwerg B, Taljaard M, Kyeremanteng K, English SW, Sekhon MS, Griesdale DEG, Dowlatshahi D, McCredie VA, Wijdicks EFM, Almenawer SA, Inaba K, Rajajee V, Perry JJ. Diagnosis of elevated intracranial pressure in critically ill — View Citation
GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017 Sep 16;390(10100):1151-1210. doi: 10.1016 — View Citation
He LY, Wang J, Luo Y, Dong WW, Liu LX. Application of non-invasive cerebral electrical impedance measurement on brain edema in patients with cerebral infarction. Neurol Res. 2010 Sep;32(7):770-4. doi: 10.1179/016164109X12478302362572. Epub 2009 Sep 1. — View Citation
Helbok R, Olson DM, Le Roux PD, Vespa P; Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations. Ne — View Citation
Hiler M, Czosnyka M, Hutchinson P, Balestreri M, Smielewski P, Matta B, Pickard JD. Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg. 2006 May — View Citation
Kumar G, Kalita J, Misra UK. Raised intracranial pressure in acute viral encephalitis. Clin Neurol Neurosurg. 2009 Jun;111(5):399-406. doi: 10.1016/j.clineuro.2009.03.004. Epub 2009 Apr 15. Review. — View Citation
LANGFITT TW, WEINSTEIN JD, KASSELL NF, SIMEONE FA. TRANSMISSION OF INCREASED INTRACRANIAL PRESSURE. I. WITHIN THE CRANIOSPINAL AXIS. J Neurosurg. 1964 Nov;21:989-97. — View Citation
Lenfeldt N, Koskinen LO, Bergenheim AT, Malm J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology. 2007 Jan 9;68(2):155-8. — View Citation
Liu H, Wang W, Cheng F, Yuan Q, Yang J, Hu J, Ren G. External Ventricular Drains versus Intraparenchymal Intracranial Pressure Monitors in Traumatic Brain Injury: A Prospective Observational Study. World Neurosurg. 2015 May;83(5):794-800. doi: 10.1016/j.w — View Citation
Lou JH, Wang J, Liu LX, He LY, Yang H, Dong WW. Measurement of brain edema by noninvasive cerebral electrical impedance in patients with massive hemispheric cerebral infarction. Eur Neurol. 2012;68(6):350-7. doi: 10.1159/000342030. Epub 2012 Oct 23. — View Citation
Makarenko S, Griesdale DE, Gooderham P, Sekhon MS. Multimodal neuromonitoring for traumatic brain injury: A shift towards individualized therapy. J Clin Neurosci. 2016 Apr;26:8-13. doi: 10.1016/j.jocn.2015.05.065. Epub 2016 Jan 2. Review. — View Citation
Miller C, Armonda R; Participants in the International Multi-disciplinary Consensus Conference on Multimodality Monitoring. Monitoring of cerebral blood flow and ischemia in the critically ill. Neurocrit Care. 2014 Dec;21 Suppl 2:S121-8. doi: 10.1007/s120 — View Citation
Nag DS, Sahu S, Swain A, Kant S. Intracranial pressure monitoring: Gold standard and recent innovations. World J Clin Cases. 2019 Jul 6;7(13):1535-1553. doi: 10.12998/wjcc.v7.i13.1535. Review. — View Citation
O'Sullivan MG, Statham PF, Jones PA, Miller JD, Dearden NM, Piper IR, Anderson SI, Housley A, Andrews PJ, Midgley S, et al. Role of intracranial pressure monitoring in severely head-injured patients without signs of intracranial hypertension on initial co — View Citation
Raj R, Bendel S, Reinikainen M, Hoppu S, Laitio R, Ala-Kokko T, Curtze S, Skrifvars MB. Costs, outcome and cost-effectiveness of neurocritical care: a multi-center observational study. Crit Care. 2018 Sep 20;22(1):225. doi: 10.1186/s13054-018-2151-5. — View Citation
Reid A, Marchbanks RJ, Burge DM, Martin AM, Bateman DE, Pickard JD, Brightwell AP. The relationship between intracranial pressure and tympanic membrane displacement. Br J Audiol. 1990 Apr;24(2):123-9. — View Citation
Ropper AH. Management of raised intracranial pressure and hyperosmolar therapy. Pract Neurol. 2014 Jun;14(3):152-8. doi: 10.1136/practneurol-2014-000811. Epub 2014 Jan 30. Review. — View Citation
Simma B, Burger R, Falk M, Sacher P, Fanconi S. A prospective, randomized, and controlled study of fluid management in children with severe head injury: lactated Ringer's solution versus hypertonic saline. Crit Care Med. 1998 Jul;26(7):1265-70. — View Citation
Tavakoli S, Peitz G, Ares W, Hafeez S, Grandhi R. Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg Focus. 2017 Nov;43(5):E6. doi: 10.3171/2017.8.FOCUS17450. Review. — View Citation
Treggiari MM, Schutz N, Yanez ND, Romand JA. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care. 2007;6(2):104-12. Review. — View Citation
* Note: There are 29 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | In a randomized controlled trial, test the effect on outcomes of management of severe supratentorial massive intracerebral hemorrhage guided by information from BIA monitors vs. ICP monitors and a standard empiric protocol. | Long-term outcome measures of neurological disability . mRS, NIHSS and Extended Glasgow Outcome Scale score. | 90 days | |
Secondary | Neurological recovery | The difference value of the NIHSS between Day 14/Day 90 and the baseline. | 90 days | |
Secondary | Correlation of edema quantification features | Comparison of the trend of brain edema coefficients monitored by the BIA technique with the quantitative features of 3D-Slice edema on CT images. | 14 days | |
Secondary | Modified Rankin scale | modified Rankin scale score, with score ranging from 0 (normal) to 6 (death), was used to evaluate the functional outcomes after ICH,good prognosis (mRS score 0-2), generally good prognosis (mRS score 3-4) , Poor prognosis (mRS >4 points). | 90 days | |
Secondary | Duration of ICU treatment | Time from the start of patient randomization to stable transfer out of the ICU. | 90 days | |
Secondary | GOS-E score | The difference value of the GOS-E between Day 14/Day 90,was used to evaluate the functional outcomes after ICH. | 90 days | |
Secondary | Quality of life score (EQ-5D) | Generic health status evaluated by EQ-5D questionnaire at the end of the therapy. | 90 days | |
Secondary | Length of hospitalization | Length of stay of patients throughout the treatment period since randomization. | 90 days | |
Secondary | The incidence of serious adverse events | The percentage of the Severity Adverse Events within the 14 days/90 days of the therapy. | 90 days | |
Secondary | Total mortality | All deaths reported post-randomization will be recorded and adjudicated | 90 days | |
Secondary | Adverse Events | The percentage of the Adverse Events during the therapy. | 90 days | |
Secondary | Severity Adverse Event | The percentage of the Severity Adverse Events within the 14 days of the therapy. | 14 days | |
Secondary | Total mortality | All deaths reported post-randomization will be recorded and adjudicated. Deaths will be subclassified by the adjudication committee as cardiovascular or non-cardiovascular. | 14 days | |
Secondary | Adverse Events | The percentage of the Adverse Events during the therapy. | 14 days | |
Secondary | The incidence of adverse events That are related to treatment | Incidence of complications that occurred during the use of invasive ICP or noninvasive cerebral edema monitoring after patient randomization. such as intracranial infection, probe displacement, recurrent intracranial hemorrhage, skin infection, etc. | 90 days |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05114551 -
ICU Predictive Score of WEaning Success in Patients At Risk of Extubation Failure
|
||
Completed |
NCT05547646 -
The Prevalence of Healthcare-associated Infection in Medical Intensive Care Units in Tunisia
|
||
Recruiting |
NCT03697785 -
Weaning Algorithm for Mechanical VEntilation
|
N/A | |
Completed |
NCT02922101 -
Evaluation of the Effectiveness of an Audit and Feedback Intervention With Quality Improvement Toolbox in Intensive Care
|
N/A | |
Completed |
NCT02902783 -
DONATE-Pilot Study on ICU Management of Deceased Organ Donors
|
||
Completed |
NCT01885442 -
TryCYCLE: A Pilot Study of Early In-bed Leg Cycle Ergometry in Mechanically Ventilated Patients
|
N/A | |
Completed |
NCT01857986 -
Evaluating Air Leak Detection in Intubated Patients
|
N/A | |
Recruiting |
NCT05518955 -
VR Integrated Into Multicomponent Interventions for Improving Sleep in ICU
|
N/A | |
Recruiting |
NCT03810768 -
Metabolomics Study on Postoperative Intensive Care Acquired Muscle Weakness
|
||
Completed |
NCT03295630 -
Validity of an Actigraph Accelerometer Following Critical Illness
|
N/A | |
Completed |
NCT05556811 -
HEaling LIght Algorithms for the ICU Patient
|
N/A | |
Recruiting |
NCT05702411 -
Air Stacking Technique For Pulmonary Reexpansion
|
N/A | |
Completed |
NCT02741453 -
Bilateral Internal Jugular Veins Ultrasound Scanning Prior to CVC Placement
|
N/A | |
Recruiting |
NCT04979897 -
Impact on Mental, Physical, And Cognitive Functioning of a Critical Care sTay During the COVID-19 Pandemic
|
||
Completed |
NCT05281224 -
Ventilator Tube Holder for Patients With a Tracheostomy
|
||
Withdrawn |
NCT02970903 -
VitalPAD: an Intelligent Monitoring and Communication Device to Optimize Safety in the PICU
|
N/A | |
Recruiting |
NCT02587273 -
The Pharmacokinetics of Fentanyl in Intensive Care Patients
|
Phase 4 | |
Completed |
NCT02661607 -
Point of Care Echocardiography Versus Chest Radiography for the Assessment of Central Venous Catheter Placement
|
N/A | |
Completed |
NCT01479153 -
Venous Site for Central Catheterization
|
N/A | |
Recruiting |
NCT06110390 -
High-flow Nasal Oxygen Therapy to Prevent Extubation Failure in Adult Trauma Intensive Care Patients
|
N/A |