Clinical Trials Logo

Clinical Trial Summary

Coronary CT angiography (CTA) or invasive coronary angiography (CAG) is usually performed to evaluate the severity of coronary stenosis depending on the probability of CAD. However, the stenosis severity is not closely corresponding with the hemodynamic significance in coronary arteries.

As a result, fractional flow reserve (FFR) with pressure wire measurement was introduced to functionally assess the coronary stenosis. FFR is defined as the ratio of maximum blood flow distal to a stenotic lesion under hyperemia state to normal maximum flow in the same vessel. The cutoff value of FFR to detect significant ischemia is set to be 0.80, indicating that PCI should be considered if FFR≤0.80. However, FFR does have some limitations, such as risks of pressure wire injury, extra time and cost, and side effects of hyperemic agents.

To overcome the limitations of FFR, CTA- and CAG-based methods to functionally assess coronary stenosis were proposed, i.e. FFR derived from CTA (FFRCT) and FFR derived from angiography-based quantitative flow ratio (QFR), which can simultaneously evaluate anatomic and hemodynamic significance of stenotic lesions. A number of studies have demonstrated that FFRCT has high sensitivity and specificity in identifying myocardial ischemia. However, the diagnostic accuracy of FFRCT depends on the image quality of coronary CTA, and it is relatively low in lesions with severe calcification and/or tortuosity. Besides, the methodology of FFRCT relies on computational fluid dynamics, which is complicated and time consuming. As for QFR, it is a novel method for deriving FFR based on 3-dimensional quantitative coronary angiography (3D-QCA) and contrast frame counting during CAG. Recent studies have shown that QFR has good diagnostic performance in evaluating the functional significance of coronary stenosis. The accuracy of QFR is also highly associated with anatomic information, thereby its diagnostic accuracy may be decreased in diffuse, tandem, thrombus-containing, calcified, or torturous lesions, and it is not suitable for prior infarction-related or collateral donor arteries as well. Given the above issues concerning FFRCT and QFR, we proposed a novel approach that integrates coronary CTA and CAG images to calculate FFR (FFRCT-angio) using artificial intelligence. The present study was undertaken to test the diagnostic accuracy of FFRCT-angio in patients with SCAD.


Clinical Trial Description

Cardiovascular disease remains the leading cause of death worldwide, and stable coronary artery disease (SCAD) accounts for the greatest proportion of cardiovascular disease. In the past decades, percutaneous coronary intervention (PCI) has become one of the most common treatments for SCAD, and therefore assessing the hemodynamic significance of coronary stenosis is important for physicians to make the optimal treating strategy. Coronary CT angiography (CTA) or invasive coronary angiography (CAG) is usually performed to evaluate the severity of coronary stenosis depending on the probability of CAD. However, the stenosis severity is not closely corresponding with the hemodynamic significance in coronary arteries.

As a result, fractional flow reserve (FFR) with pressure wire measurement was introduced to functionally assess the coronary stenosis. FFR is defined as the ratio of maximum blood flow distal to a stenotic lesion under hyperemia state to normal maximum flow in the same vessel. The cutoff value of FFR to detect significant ischemia is set to be 0.80, indicating that PCI should be considered if FFR≤0.80. FAME (Fractional Flow Reserve versus Angiography for Multivessel Evaluation) study confirmed that FFR guided PCI was superior to angiography guided PCI in reducing major adverse cardiovascular events (MACE) in patients with multivessel disease. In the subsequent FAME 2 study, FFR guided PCI plus the optimal medical treatment (OMT), as compared with the OMT alone, decreased the composite event rates mainly driven by urgent revascularization in SCAD patients. However, FFR does have some limitations, such as risks of pressure wire injury, extra time and cost, and side effects of hyperemic agents.

To overcome the limitations of FFR, CTA- and CAG-based methods to functionally assess coronary stenosis were proposed, i.e. FFR derived from CTA (FFRCT) and FFR derived from angiography-based quantitative flow ratio (QFR), which can simultaneously evaluate anatomic and hemodynamic significance of stenotic lesions. A number of studies have demonstrated that FFRCT has high sensitivity and specificity in identifying myocardial ischemia. However, the diagnostic accuracy of FFRCT depends on the image quality of coronary CTA, and it is relatively low in lesions with severe calcification and/or tortuosity. Besides, the methodology of FFRCT relies on computational fluid dynamics, which is complicated and time consuming. As for QFR, it is a novel method for deriving FFR based on 3-dimensional quantitative coronary angiography (3D-QCA) and contrast frame counting during CAG. Recent studies have shown that QFR has good diagnostic performance in evaluating the functional significance of coronary stenosis. The accuracy of QFR is also highly associated with anatomic information, thereby its diagnostic accuracy may be decreased in diffuse, tandem, thrombus-containing, calcified, or torturous lesions, and it is not suitable for prior infarction-related or collateral donor arteries as well. Given the above issues concerning FFRCT and QFR, we proposed a novel approach that integrates coronary CTA and CAG images to calculate FFR (FFRCT-angio) using artificial intelligence. The present study was undertaken to test the diagnostic accuracy of FFRCT-angio in patients with SCAD. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04493086
Study type Observational
Source First Affiliated Hospital of Harbin Medical University
Contact Yue Li, PhD
Phone 86-451-85552216
Email ly99ly@vip.163.com
Status Recruiting
Phase
Start date October 1, 2020
Completion date December 31, 2021

See also
  Status Clinical Trial Phase
Recruiting NCT06030596 - SPECT Myocardial Blood Flow Quantification for Diagnosis of Ischemic Heart Disease Determined by Fraction Flow Reserve
Completed NCT04080700 - Korean Prospective Registry for Evaluating the Safety and Efficacy of Distal Radial Approach (KODRA)
Recruiting NCT03810599 - Patient-reported Outcomes in the Bergen Early Cardiac Rehabilitation Study N/A
Recruiting NCT06002932 - Comparison of PROVISIONal 1-stent Strategy With DEB Versus Planned 2-stent Strategy in Coronary Bifurcation Lesions. N/A
Not yet recruiting NCT06032572 - Evaluation of the Safety and Effectiveness of the VRS100 System in PCI (ESSENCE) N/A
Recruiting NCT04242134 - Drug-coating Balloon Angioplasties for True Coronary Bifurcation Lesions N/A
Recruiting NCT05308719 - Nasal Oxygen Therapy After Cardiac Surgery N/A
Completed NCT04556994 - Phase 1 Cardiac Rehabilitation With and Without Lower Limb Paddling Effects in Post CABG Patients. N/A
Recruiting NCT05846893 - Drug-Coated Balloon vs. Drug-Eluting Stent for Clinical Outcomes in Patients With Large Coronary Artery Disease N/A
Recruiting NCT06027788 - CTSN Embolic Protection Trial N/A
Recruiting NCT05023629 - STunning After Balloon Occlusion N/A
Completed NCT04941560 - Assessing the Association Between Multi-dimension Facial Characteristics and Coronary Artery Diseases
Completed NCT04006288 - Switching From DAPT to Dual Pathway Inhibition With Low-dose Rivaroxaban in Adjunct to Aspirin in Patients With Coronary Artery Disease Phase 4
Completed NCT01860274 - Meshed Vein Graft Patency Trial - VEST N/A
Recruiting NCT06174090 - The Effect of Video Education on Pain, Anxiety and Knowledge Levels of Coronary Bypass Graft Surgery Patients N/A
Terminated NCT03959072 - Cardiac Cath Lab Staff Radiation Exposure
Completed NCT03968809 - Role of Cardioflux in Predicting Coronary Artery Disease (CAD) Outcomes
Recruiting NCT04566497 - Assessment of Adverse Outcome in Asymptomatic Patients With Prior Coronary Revascularization Who Have a Systematic Stress Testing Strategy Or a Non-testing Strategy During Long-term Follow-up. N/A
Recruiting NCT05065073 - Iso-Osmolar vs. Low-Osmolar Contrast Agents for Optical Coherence Tomography Phase 4
Completed NCT05096442 - Compare the Safety and Efficacy of Genoss® DCB and SeQuent® Please NEO in Korean Patients With Coronary De Novo Lesions N/A