Clinical Trials Logo

Clinical Trial Summary

The VitaBreath (Philips, Respironics) is a portable, handheld, battery powered, non-invasive ventilation device, that has been shown to reduce activity-related shortness of breath in patients with COPD. The VitaBreath device delivers 18 cmH2O inspiratory and 8 cmH2O expiratory pressures, but can only be used during recovery periods.

A previous study (REC: 17/NE/0085) showed that use of the VitaBreath device during the recovery periods interspersing successive exercise bouts enhances exercise tolerance and reduces breathlessness compared to pursed lip breathing in patients with COPD. This was attributed to faster recovery from exercise-induced dynamic hyperinflation, assessed by volitional inspiratory capacity manoeuvres using a spirometer. However, inspiratory capacity manoeuvres are effort dependent, thus limiting the number of repetitions the patient can perform during exercise. In addition, investigation of the direct effect of the application of the VitaBreath device on dynamic hyperinflation was not possible due to the need to employ a spirometer for assessing inspiratory capacity. Optoelectronic plethysmography (OEP) allows continuous non-invasive assessment of end-inspiratory and end-expiratory volumes of the thoracoabdominal wall and its compartments, thereby facilitating assessment of dynamic hyperinflation on a breath-by-breath basis without the necessity to breathe via a spirometer. Unfortunately, OEP technology was not available at the time of our previous study.

The investigators will use OEP to provide accurate breath-by-breath volume measurements during exercise and recovery to evaluate whether the VitaBreath device reduces total and compartmental thoracoabdominal wall volumes compared to the pursed lip breathing technique.

Furthermore, the investigators will investigate the effect of use of the VitaBreath device on respiratory muscle activation and respiratory muscle oxygenation using OEP technology in conjunction with electromyography (EMG) and near inferred spectroscopy (NIRS), respectively to appreciate how the application of the VitaBreath device impacts on the operation and energy demands of the respiratory muscles as compared to control pursed lip breathing.

The investigators hypothesised that the use of the VitaBreath device during the recovery periods interspersing successive exercise bouts will reduce the magnitude of dynamic hyperinflation in a greater extent compared to the pursed lip breathing technique.


Clinical Trial Description

Study Design:

This is a randomised crossover trial. Patients will perform two identical exercise tests and the intervention (VitaBreath) will be compared to control condition (pursed-lip breathing) in the same patients. The order of testing will be determined by simple randomisation (sealedenvelope.com).

The purpose of this study is to investigate the effect of the VitaBreath device on inspiratory and expiratory thoracoabdominal wall volumes during exercise in patients with COPD. Use of the VitaBreath device will be compared to normal breathing (pursed lip breathing technique). Patients will primarily be recruited from those who participated in our previous study (REC reference: 17/NE/0085 - IRAS project ID: 221120) at North Tyneside General Hospital and will undergo two exercise tests on a cycle ergometer on the same day using both the VitaBreath device and the pursed-lip breathing technique during recovery from exercise.

Study interventions:

The study will include two visits. During the first visit patients will undergo a clinical assessment, including history, physical examination, ECG and full lung function assessment including spirometry, to ensure that patients are stable. During the second visit patients will perform two intermittent exercise tests lasting 20 minutes each and consisting of 2-min work bouts at 80% of peak work rate (WR peak) as determined in the previous study (REC reference: 17/NE/0085 - IRAS project ID: 221120) with 2-min recovery periods in between work bouts, using either the VitaBreath device or the pursed lip breathing technique during recovery periods. Patients will be given written information explaining the procedure and will provide written informed consent.

Assessment Procedures

Visit 1

Baseline assessment

During the first visit patients will undergo the following baseline assessment: a) medical history and physical examination, b) spirometry and c) resting ECG to assess the resting heart function.

Visit 2

Preparation of the patients

Upon arrival to the laboratory, and prior to any intervention, adhesive skin markers for Opto-Electronic Plethysmography (OEP) recordings (to assess thoracoabdominal wall dynamic hyperinflation), and set of adhesive optodes for portable cardio-impedance recordings (to assess cardiac output), muscle surface electromyography (to assess muscle recruitment patterns) and near inferred spectroscopy (to assess respiratory muscle oxygen requirement) will be attached on the skin. All procedures will be explained in detail prior each trial.

Operational chest wall volumes

At baseline, patients will be instructed after 3-4 regular tidal breaths to make two maximal inspiratory capacity (IC) efforts from End Expiratory Chest Wall (EECW) Volume to Total Chest Wall Capacity (TLCCW) in order to assess chest wall volume at TLC (TLCCW) and Inspiratory Reserve Chest wall Volume (IRVcw) at rest. During exercise and recovery, chest wall kinematics will be measured by OEP as follows: the movement of 89 retro-reflective markers placed front and back over the chest wall from clavicles to pubis will be recorded. Each marker will be tracked by eight video cameras (Smart System BTS, Milan, Italy), four in front of the subject and four behind. Subjects will be grasp handles positioned at the mid sternum level which will lift the arms away from the rib cage so that lateral markers can be visualised. Dedicated software reconstructs the three-dimensional coordinates of the markers in real time by stereophotogrametry and calculates total and compartmental chest wall volume and volume variations using Gauss's theorem. The chest wall is modelled as being composed of two compartments-the rib cage and the abdomen. Vcw is the sum of the rib cage volume (Vrc) and abdominal volume (Vab).

Non-Invasive assessment of respiratory muscle oxygenation

In addition to operational chest wall volumes investigators are going to assess intercostal and abdominal local muscle oxygenation using Near-Infrared Spectroscopy (NIRS). Two NIRS optodes, which will be connected to a NIRO 200 spectrophotometer (Hamamatsu Photonics, Hamamatsu, Japan), will be placed on the skin over the left seventh intercostal space at the midaxillary line and over the upper rectus abdominis respectively, and will be secured using adhesive tape. The left intercostal space will be used to avoid potential blood flow contributions from the liver on the right side of the body.

Respiratory muscle electromyography

Electromyography (EMG) will be used in order assess respiratory muscle activation. Skin will be cleaned and surface electrodes (Delsys Trigno, Delsys, Boston, MA, USA) will be placed as follows: on the surface over the right seventh intercostal space (EMGic), 2 cm lateral to the umbilicus, over the muscle mass of rectus abdominis (EMGra), over the sternocleidomastoid muscle (EMGster), and on the scalene muscle (EMGsca). EMG data will be recorded at 2000Hz and will be filtered at 25-500 Hz during each trial (Spike 2, Cambridge Electronic Design, Cambridge, UK).

Exercise protocol

Patients will undergo two intermittent exercise protocols on a cycle ergometer. The exercise protocol will consist of repeated 2-min exercise bouts, separated by 2-min recovery periods in between work bouts in order to allow application of the VitaBreath device. During the 1st min of each recovery period patients will breathe either via the VitaBreath device or adopting the pursed lip breathing technique. During the 2nd min of each recovery period patients will breathe normally. Patients will also score the intensity of their perceived dyspnoea using the Borg 1-10 scale. Cardiac output and stroke volume will be measured non-invasively using a cardio-impedance method (physio-flow) throughout the exercise and recovery periods. Respiratory muscle activation (EMG) and local respiratory muscle oxygen tissue oxygenation (NIRS) will be continuously recorded non-invasively using optodes placed on the skin throughout the exercise and recovery periods. In addition, arterial oxygen saturation will be recorded throughout the exercise and recovery periods using a pulse oximeter.

Sample size estimation

Estimation of sample size within each breathing modality is based on the results of a study comparing use of the VitaBreath device to pursed lip breathing (PLB). Using the mean difference in the recovery of inspiratory capacity compared to the end of exercise (130 ml) between the VitaBreath device and PLB, the SD (110 ml), an alpha significance level of 0.05 (2-sided) and 80% power, a minimum total sample size of 11 patients is calculated to be sufficient to detect significant differences in the magnitude of change in thoracoabdominal wall dynamic hyperinflation between the VitaBreath device and PLB trials. 12 patients will be recruited in order to perform the trials in a balanced ordering sequence. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03848819
Study type Interventional
Source Northumbria University
Contact
Status Completed
Phase N/A
Start date July 1, 2019
Completion date February 29, 2020

See also
  Status Clinical Trial Phase
Completed NCT05102305 - A Multi-center,Prospective, OS to Evaluate the Effectiveness of 'NAC' Nebulizer Therapy in COPD (NEWEST)
Completed NCT01867762 - An Effectiveness and Safety Study of Inhaled JNJ 49095397 (RV568) in Patients With Moderate to Severe Chronic Obstructive Pulmonary Disease Phase 2
Recruiting NCT05562037 - Stepped Care vs Center-based Cardiopulmonary Rehabilitation for Older Frail Adults Living in Rural MA N/A
Terminated NCT04921332 - Bright Light Therapy for Depression Symptoms in Adults With Cystic Fibrosis (CF) and COPD N/A
Completed NCT03089515 - Small Airway Chronic Obstructive Disease Syndrome Following Exposure to WTC Dust N/A
Completed NCT02787863 - Clinical and Immunological Efficiency of Bacterial Vaccines at Adult Patients With Bronchopulmonary Pathology Phase 4
Recruiting NCT05552833 - Pulmonary Adaptive Responses to HIIT in COPD N/A
Recruiting NCT05835492 - A Pragmatic Real-world Multicentre Observational Research Study to Explore the Clinical and Health Economic Impact of myCOPD
Recruiting NCT05631132 - May Noninvasive Mechanical Ventilation (NIV) and/or Continuous Positive Airway Pressure (CPAP) Increase the Bronchoalveolar Lavage (BAL) Salvage in Patients With Pulmonary Diseases? N/A
Completed NCT03244137 - Effects of Pulmonary Rehabilitation on Cognitive Function in Patients With Severe to Very Severe Chronic Obstructive Pulmonary Disease
Not yet recruiting NCT03282526 - Volume Parameters vs Flow Parameters in Assessment of Reversibility in Chronic Obstructive Pulmonary Disease N/A
Completed NCT02546700 - A Study to Evaluate Safety and Efficacy of Lebrikizumab in Participants With Chronic Obstructive Pulmonary Disease (COPD) Phase 2
Withdrawn NCT04446637 - Acute Bronchodilator Effects of Ipratropium/Levosalbutamol 20/50 mcg Fixed Dose Combination vs Salbutamol 100 mcg Inhaler Plus Ipratropium 20 mcg Inhalation Aerosol Free Combination in Patients With Stable COPD Phase 3
Completed NCT04535986 - A Phase 3 Clinical Trial to Evaluate the Safety and Efficacy of Ensifentrine in Patients With COPD Phase 3
Recruiting NCT05865184 - Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
Completed NCT03256695 - Evaluate the Relationship Between Use of Albuterol Multidose Dry Powder Inhaler With an eModule (eMDPI) and Exacerbations in Participants With Chronic Obstructive Pulmonary Disease (COPD) Phase 3
Completed NCT03295474 - Telemonitoring in Pulmonary Rehabilitation: Feasibility and Acceptability of a Remote Pulse Oxymetry System.
Withdrawn NCT04042168 - Implications of Appropriate Use of Inhalers in Chronic Obstructive Pulmonary Disease (COPD) Phase 4
Completed NCT03414541 - Safety And Efficacy Study Of Orally Administered DS102 In Patients With Chronic Obstructive Pulmonary Disease Phase 2
Completed NCT02552160 - DETECT-Register DocumEnTation and Evaluation of a COPD Combination Therapy