Clinical Trials Logo

Clinical Trial Summary

Lung cancer, largely the result of cigarette smoking, is the leading cause of cancer death in the United States, killing over 160,000 people in 2010, more than breast, colorectal, and prostate cancer combined. Since only 10% of heavy smokers develop lung cancer and 20% of lung cancers develop in nonsmokers, it is thought that genetic predisposition plays an important role. This study proposes to examine the genetic correlation between nasal and bronchial epithelium and to identify a patient's risk for lung cancer earlier.


Clinical Trial Description

Lung cancer, largely the result of cigarette smoking, is the leading cause of cancer death in the United States, killing over 160,000 people in 2010, more than breast, colorectal, and prostate cancer combined. Since only 10% of heavy smokers develop lung cancer and 20% of lung cancers develop in nonsmokers, it is thought that genetic predisposition plays an important role.

Without screening, lung cancer is only detected at an early stage 10% of the time, translating into a 7% cure rate. Published studies of screening for lung cancer using CT scans show that it is detectable at an early stage 85% of the time, translating into a cure rate over 60%. However, in a sample population of 1000 smokers over the age of 60 (high risk individuals), 233 will have suspicious abnormalities on CT scans, but only 27 had lung cancer. Two concerns are apparent. First, among the 233 individuals with suspicious abnormalities on CT, how does one choose the ones suspicious enough for biopsy, surgery, or other invasive procedures? Generally, follow-up CT scans over several months are used to assess the abnormalities for growth, since growth is a characteristic of malignancy. Unfortunately, repeated CT scans involve financial cost and potential radiation risk. An additional technique which is able to predict predisposition to lung cancer, if combined with the ability of CT scans to detect abnormalities in real time, could prove to be a powerful platform to efficiently screen for lung cancer and reduce its mortality.

Lung cancer develops as a consequence of a series of genetic injuries to the cells lining the airways which cause these bronchial cells to grow in a malignant manner, unchecked, resistant to normal homeostatic controls. By studying the gene expression signature of airway (bronchial) lining cells, differences are observed between normal nonsmokers, individuals exposed to smoke second-hand, and smokers who have developed COPD (chronic bronchitis and emphysema). Some genetic changes in bronchial lining cells near a lung cancer are specific to lung cancer --- the "field effect." Obtaining bronchial lining cells for genetic analysis requires an invasive and expensive procedure, fiberoptic bronchoscopy, and therefore bronchoscopically acquired bronchial lining cells are not suitable for screening of the public for lung cancer.

The lining cells of the nose, the nasal epithelium, which is part of the human airway, have many similarities to bronchial epithelium, but they are much more accessible. A gentle scraping of the nasal lining involves no risk to the patient, less cost, and, it is hoped, will provide the same genetic information as the bronchial lining cells.

This study proposes to examine the genetic correlation between nasal and bronchial epithelium in the hopes of developing an office-based test to identify a patient's risk for lung cancer. It is hoped that the genetic analysis of nasal epithelium may be combined with the other risk factors for lung cancer such as cigarette smoking, age over 50 years, and an obstructive ventilatory impairment noted on pulmonary function tests to find the ideal (or enriched) population to screen with CT to detect early lung cancer, thus reducing the financial cost, radiation exposure, and risk of invasive procedures to a minimum, furthering the ultimate goal of "personalized medicine." ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01982149
Study type Observational
Source Weill Medical College of Cornell University
Contact
Status Terminated
Phase
Start date June 2014
Completion date May 2019

See also
  Status Clinical Trial Phase
Completed NCT05102305 - A Multi-center,Prospective, OS to Evaluate the Effectiveness of 'NAC' Nebulizer Therapy in COPD (NEWEST)
Completed NCT01867762 - An Effectiveness and Safety Study of Inhaled JNJ 49095397 (RV568) in Patients With Moderate to Severe Chronic Obstructive Pulmonary Disease Phase 2
Recruiting NCT05562037 - Stepped Care vs Center-based Cardiopulmonary Rehabilitation for Older Frail Adults Living in Rural MA N/A
Terminated NCT04921332 - Bright Light Therapy for Depression Symptoms in Adults With Cystic Fibrosis (CF) and COPD N/A
Completed NCT03089515 - Small Airway Chronic Obstructive Disease Syndrome Following Exposure to WTC Dust N/A
Completed NCT02787863 - Clinical and Immunological Efficiency of Bacterial Vaccines at Adult Patients With Bronchopulmonary Pathology Phase 4
Recruiting NCT05552833 - Pulmonary Adaptive Responses to HIIT in COPD N/A
Recruiting NCT05835492 - A Pragmatic Real-world Multicentre Observational Research Study to Explore the Clinical and Health Economic Impact of myCOPD
Recruiting NCT05631132 - May Noninvasive Mechanical Ventilation (NIV) and/or Continuous Positive Airway Pressure (CPAP) Increase the Bronchoalveolar Lavage (BAL) Salvage in Patients With Pulmonary Diseases? N/A
Completed NCT03244137 - Effects of Pulmonary Rehabilitation on Cognitive Function in Patients With Severe to Very Severe Chronic Obstructive Pulmonary Disease
Not yet recruiting NCT03282526 - Volume Parameters vs Flow Parameters in Assessment of Reversibility in Chronic Obstructive Pulmonary Disease N/A
Completed NCT02546700 - A Study to Evaluate Safety and Efficacy of Lebrikizumab in Participants With Chronic Obstructive Pulmonary Disease (COPD) Phase 2
Withdrawn NCT04446637 - Acute Bronchodilator Effects of Ipratropium/Levosalbutamol 20/50 mcg Fixed Dose Combination vs Salbutamol 100 mcg Inhaler Plus Ipratropium 20 mcg Inhalation Aerosol Free Combination in Patients With Stable COPD Phase 3
Completed NCT04535986 - A Phase 3 Clinical Trial to Evaluate the Safety and Efficacy of Ensifentrine in Patients With COPD Phase 3
Recruiting NCT05865184 - Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
Completed NCT03256695 - Evaluate the Relationship Between Use of Albuterol Multidose Dry Powder Inhaler With an eModule (eMDPI) and Exacerbations in Participants With Chronic Obstructive Pulmonary Disease (COPD) Phase 3
Completed NCT03295474 - Telemonitoring in Pulmonary Rehabilitation: Feasibility and Acceptability of a Remote Pulse Oxymetry System.
Withdrawn NCT04042168 - Implications of Appropriate Use of Inhalers in Chronic Obstructive Pulmonary Disease (COPD) Phase 4
Completed NCT03414541 - Safety And Efficacy Study Of Orally Administered DS102 In Patients With Chronic Obstructive Pulmonary Disease Phase 2
Completed NCT02552160 - DETECT-Register DocumEnTation and Evaluation of a COPD Combination Therapy