Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01228305
Other study ID # 090497
Secondary ID
Status Completed
Phase N/A
First received October 22, 2010
Last updated April 19, 2017
Start date July 2011
Est. completion date March 2014

Study information

Verified date April 2017
Source Vanderbilt University Medical Center
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The current proposal tests the central hypothesis that acetaminophen will attenuate the oxidative stress response associated with cardiopulmonary bypass (CPB)-induced hemolysis in children undergoing cardiac surgery.


Description:

Infants with complex congenital cardiac defects frequently undergo cardiopulmonary bypass (CBP) during surgical repair of their cardiac lesions (1). CBP exposes infants and children to endothelial damage, hyperoxia, hemolysis, and systemic inflammatory response (2-7). The systemic inflammatory response contributes to the organ dysfunction and is initiated by exposure of blood to the artificial surfaces of the extracorporeal circuit resulting in significant hemolysis and activation of complement. Hyperoxia has been shown to cause oxidative stress and the production of free radical molecules, which contributes to the morbidity of CPB. Hemolysis leads to free hemoglobin and the subsequent release of free iron in the plasma, which can catalyze redox reactions and has been shown to be another source of severe oxidant injury in children following bypass (8, 9). Additionally, the release of proinflammatory cytokines, hypothermia, hemorrhage requiring multiple transfusions, and activation of neutrophils leading to an enhancement of the respiratory burst contribute to oxidative injury and worsening inflammation (9).

Myoglobin and hemoglobin contain ferrous iron (Fe2+), which normally transports reversibly bound oxygen molecules to tissues. When muscle or red blood cells are damaged, the iron-chelating heme molecules are released into the plasma, and the ferrous iron is oxidized to the ferric (Fe3+) state. In the higher oxidation state, the ferric hemoproteins are able to reduce other molecules, notably hydrogen peroxide and lipid hydroperoxides, producing lipid peroxides and ferryl (Fe4+) hemoproteins. The ferryl hemoproteins can then enter an oxidation-reduction cycle with lipid molecules, causing further lipid peroxide production, leading to a cascade of oxidative damage to cellular membranes (10-12).

With increasing oxidative stress, oxygen free radicals attack esterified arachidonate layered within cell membrane lipid bilayers, resulting in the production of multiple lipid peroxidation products called isoprostanes (Iso-P) and isofurans (IsoF) (13-17). Many forms of IsoF and IsoP have been shown to be powerful vasoconstrictors, and have been shown to contribute to the pathogenesis and organ dysfunction associated with rhabdomyolysis, subarachnoid hemorrhage and hemolytic disorders (10, 16, 18-21). F2-isoprostanes are sensitive and specific markers of oxidative stress in vivo. (4) The mechanism/s causing increased oxidative stress during CPB are incompletely understood and the relationship between free hemoglobin and F2-isoprostanes in humans undergoing CPB is unknown.

Inhibition of hemoprotein-induced oxidative stress may have important clinical applications in humans. Hemolysis, in addition to contributing to the oxidative stress response, is also associated with acute kidney injury (AKI) in patients undergoing CPB or extracorporeal life support (5-6). In fact, plasma free hemoglobin has been shown to be an independent predictor of AKI in the early postoperative period (5). We have recently demonstrated that acetaminophen, through inhibition of prostaglandin H2-synthases (PGHS), inhibits the oxidation of free arachidonic acid catalyzed by myoglobin and hemoglobin. Moreover, in an animal model of rhabdomyolysis-induced kidney injury, acetaminophen significantly attenuated the decrease in creatinine clearance compared to control (10).

The current proposal tests the central hypothesis that acetaminophen will attenuate the oxidative stress response associated with CPB-induced hemolysis in children undergoing cardiac surgery. If acetaminophen attenuates the oxidative stress response associated with CPB-induced hemolysis the potential therapeutic benefit extends to all cardiac surgery patients requiring CPB. Based on the outcome of this pilot study we will design a prospective randomized trial to test the hypothesis that acetaminophen will reduce AKI associated with hemoprotein-induced oxidative stress following CPB.


Recruitment information / eligibility

Status Completed
Enrollment 30
Est. completion date March 2014
Est. primary completion date January 2014
Accepts healthy volunteers No
Gender All
Age group N/A to 17 Years
Eligibility Patients will be eligible for enrollment based on the following inclusion criteria:

1) Infants or children (newborn to 17years of age) undergoing cardiopulmonary bypass for biventricular surgical correction of their congenital heart lesions.

Patients will not be eligible for this study based on the following exclusion criteria:

1. Patients scheduled for single ventricle palliation will be excluded, in an effort to standardize the time of repair, time on CPB, and surgical procedure.

2. Patients with severe neurological abnormalities at baseline.

3. Patients with major non-cardiac congenital malformations, developmental disorders or serious chronic disorders. Benign congenital malformations (such as club foot, ear tags, etc.) will not exclude the subject from the study.

4. Non-English speaking patients, or parent/legal guardians.

5. Patients less than 3 kg, to limit risk of excessive blood loss from lab draws.

6. Previous adverse reaction to acetaminophen

7. History of acute or chronic kidney disease

8. History of chronic liver disease

9. Emergency surgery

Study Design


Intervention

Other:
Acetaminophen
Acetaminophen will be given at a standard dose of 15 mg/kg IV every 6 hours for children >=2 years of age, 12.5mg/kg IV every 6 hours for children 29 days to <2 years of age, and 7.5mg/kg IV every 6 hours for neonates up to 28 days old for a total of 4 doses, starting shortly after intubation in the OR and before the start of CPB.

Locations

Country Name City State
United States Vanderbilt University Nashville Tennessee

Sponsors (1)

Lead Sponsor Collaborator
Vanderbilt University Medical Center

Country where clinical trial is conducted

United States, 

References & Publications (21)

Allen BS, Ilbawi MN. Hypoxia, reoxygenation and the role of systemic leukodepletion in pediatric heart surgery. Perfusion. 2001 Mar;16 Suppl:19-29. Review. — View Citation

Boutaud O, Moore KP, Reeder BJ, Harry D, Howie AJ, Wang S, Carney CK, Masterson TS, Amin T, Wright DW, Wilson MT, Oates JA, Roberts LJ 2nd. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2699-704. doi: 10.1073/pnas.0910174107. Epub 2010 Feb 1. — View Citation

Christen S, Finckh B, Lykkesfeldt J, Gessler P, Frese-Schaper M, Nielsen P, Schmid ER, Schmitt B. Oxidative stress precedes peak systemic inflammatory response in pediatric patients undergoing cardiopulmonary bypass operation. Free Radic Biol Med. 2005 May 15;38(10):1323-32. — View Citation

Fessel JP, Porter NA, Moore KP, Sheller JR, Roberts LJ 2nd. Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16713-8. Epub 2002 Dec 13. — View Citation

Gbadegesin R, Zhao S, Charpie J, Brophy PD, Smoyer WE, Lin JJ. Significance of hemolysis on extracorporeal life support after cardiac surgery in children. Pediatr Nephrol. 2009 Mar;24(3):589-95. doi: 10.1007/s00467-008-1047-z. Epub 2008 Nov 12. — View Citation

Haase M, Haase-Fielitz A, Bagshaw SM, Ronco C, Bellomo R. Cardiopulmonary bypass-associated acute kidney injury: a pigment nephropathy? Contrib Nephrol. 2007;156:340-53. Review. — View Citation

Holt S, Moore K. Pathogenesis of renal failure in rhabdomyolysis: the role of myoglobin. Exp Nephrol. 2000 Mar-Apr;8(2):72-6. Review. — View Citation

Holt S, Reeder B, Wilson M, Harvey S, Morrow JD, Roberts LJ 2nd, Moore K. Increased lipid peroxidation in patients with rhabdomyolysis. Lancet. 1999 Apr 10;353(9160):1241. — View Citation

Kadiiska MB, Gladen BC, Baird DD, Germolec D, Graham LB, Parker CE, Nyska A, Wachsman JT, Ames BN, Basu S, Brot N, Fitzgerald GA, Floyd RA, George M, Heinecke JW, Hatch GE, Hensley K, Lawson JA, Marnett LJ, Morrow JD, Murray DM, Plastaras J, Roberts LJ 2nd, Rokach J, Shigenaga MK, Sohal RS, Sun J, Tice RR, Van Thiel DH, Wellner D, Walter PB, Tomer KB, Mason RP, Barrett JC. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med. 2005 Mar 15;38(6):698-710. — View Citation

Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002 Jul;97(1):215-52. Review. — View Citation

Milne GL, Musiek ES, Morrow JD. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers. 2005 Nov;10 Suppl 1:S10-23. Review. — View Citation

Montuschi P, Barnes PJ, Roberts LJ 2nd. Isoprostanes: markers and mediators of oxidative stress. FASEB J. 2004 Dec;18(15):1791-800. Review. — View Citation

Morita K, Ihnken K, Buckberg GD, Sherman MP, Young HH, Ignarro LJ. Role of controlled cardiac reoxygenation in reducing nitric oxide production and cardiac oxidant damage in cyanotic infantile hearts. J Clin Invest. 1994 Jun;93(6):2658-66. — View Citation

Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9383-7. — View Citation

Morrow JD. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol. 2005 Feb;25(2):279-86. Epub 2004 Dec 9. Review. — View Citation

Ouellet M, Percival MD. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms. Arch Biochem Biophys. 2001 Mar 15;387(2):273-80. — View Citation

Patel RP, Svistunenko DA, Darley-Usmar VM, Symons MC, Wilson MT. Redox cycling of human methaemoglobin by H2O2 yields persistent ferryl iron and protein based radicals. Free Radic Res. 1996 Aug;25(2):117-23. — View Citation

Reeder BJ, Sharpe MA, Kay AD, Kerr M, Moore K, Wilson MT. Toxicity of myoglobin and haemoglobin: oxidative stress in patients with rhabdomyolysis and subarachnoid haemorrhage. Biochem Soc Trans. 2002 Aug;30(4):745-8. — View Citation

Roberts LJ 2nd, Fessel JP, Davies SS. The biochemistry of the isoprostane, neuroprostane, and isofuran Pathways of lipid peroxidation. Brain Pathol. 2005 Apr;15(2):143-8. Review. — View Citation

Roberts LJ 2nd. Inhibition of heme protein redox cycling: reduction of ferryl heme by iron chelators and the role of a novel through-protein electron transfer pathway. Free Radic Biol Med. 2008 Feb 1;44(3):257-60. Epub 2007 Dec 5. — View Citation

Vermeulen Windsant IC, Snoeijs MG, Hanssen SJ, Altintas S, Heijmans JH, Koeppel TA, Schurink GW, Buurman WA, Jacobs MJ. Hemolysis is associated with acute kidney injury during major aortic surgery. Kidney Int. 2010 May;77(10):913-20. doi: 10.1038/ki.2010.24. Epub 2010 Feb 24. — View Citation

* Note: There are 21 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary oxidative stress response as measured by F2-isoprostane Test the hypothesis that acetaminophen attenuates the oxidative stress response, as measured by F2-isoprostanes, in children undergoing cardiopulmonary bypass. The primary outcome is the oxidative stress response as measured by F2-isoprostane 24 hours after cardiopulmonary bypass
Secondary renal function Because free hemoglobin (hemolysis) has been associated with acute kidney injury (AKI) we will assess renal function as a secondary outcome in the immediate postoperative period. To assess renal function we will collect already available data including urine output, blood urea nitrogen, Creatinine and daily fluid ins and outs. Other potential confounders of AKI including cardiopulmonary bypass (CPB) time, daily use vasopressors and re-exploration for bleeding will be collected. In addition we will also measure urine neutrophil gelatinase-associated lipocalin (NGAL) as an early marker for AKI. for the first 24 hrs after cardiopulmonary bypass
See also
  Status Clinical Trial Phase
Recruiting NCT05654272 - Development of CIRC Technologies
Recruiting NCT04992793 - Paediatric Brain Injury Following Cardiac Interventions
Recruiting NCT05213598 - Fontan Associated Liver Disease and the Evaluation of Biomarkers for Disease Severity Assessment
Completed NCT04136379 - Comparison of Home and Standard Clinic Monitoring of INR in Patients With CHD
Completed NCT04814888 - 3D Airway Model for Pediatric Patients
Recruiting NCT04920643 - High-exchange ULTrafiltration to Enhance Recovery After Pediatric Cardiac Surgery N/A
Completed NCT05934578 - Lymphatic Function in Patients With Fontan Circulation: Effect of Physical Training N/A
Recruiting NCT06041685 - Effect of Local Warming for Arterial Catheterization in Pediatric Anesthesia N/A
Recruiting NCT05902013 - Video Laryngoscopy Versus Direct Laryngoscopy for Nasotracheal Intubation N/A
Not yet recruiting NCT05687292 - Application of a Clinical Decision Support System to Reduce Mechanical Ventilation Duration After Cardiac Surgery
Not yet recruiting NCT05524324 - Cardiac Resynchronization Therapy in Adult Congenital Heart Disease With Systemic Right Ventricle: RIGHT-CRT N/A
Completed NCT02746029 - Cardiac Murmurs in Children: Predictive Value of Cardiac Markers
Completed NCT03119090 - Fontan Imaging Biomarkers (FIB) Study
Completed NCT02537392 - Multi-micronutrient Supplementation During Peri-conception and Congenital Heart Disease N/A
Recruiting NCT02258724 - Swiss National Registry of Grown up Congenital Heart Disease Patients
Completed NCT01966237 - Milrinone Pharmacokinetics and Acute Kidney Injury
Terminated NCT02046135 - Sodium Bicarbonate to Prevent Acute Kidney Injury in Children Undergoing Cardiac Surgery Phase 2
Recruiting NCT01184404 - Bosentan Improves Clinical Outcome of Adults With Congenital Heart Disease or Mitral Valve Lesions Who Undergo CArdiac Surgery N/A
Completed NCT01548950 - Drug Therapy and Surgery in Congenital Heart Disease With Pulmonary Hypertension N/A
Completed NCT01178710 - Effect of Simvastatin on Cardiac Function N/A