Clinical Trials Logo

Clinical Trial Summary

Significant morbidity, mortality, and related costs are caused by traumatic brain injury (TBI). An externally-worn medical device that applies mild jugular compression according to the principle of the Queckenstedt Maneuver (the Device). Preliminary research suggests that the Device has the potential to reduce the likelihood of TBI. The currently developed collar has been approved for studies in humans and the results indicate safety for use during high demand and maximal exertion activities, This study will investigate the effectiveness of this device in high school athletes playing a collision sport such as football. The use of helmets during such a high-risk sport will allow for collision measurement devices to be embedded in the helmet and will not affect play or fit of equipment. Athletes participating in this study will be randomly assigned to one of two groups: 1) Device wearing during the season or 2) Non-device wearing during the season. The helmets of all participants will be outfitted with an accelerometer which will measure the magnitude of every impact to the head sustained by the athlete. Effectiveness of the device will be determined via differences in longitudinal brain imaging and functional testing following competitive football participation. A subset of athletes who report a diagnosed concussion will also receive additional brain neuroanatomical and neurophysiological testing within a week following the diagnosed concussive event. The purpose of the study is to monitor longitudinal changes in brain structure and function between the preseason and postseason, in a population of football playing athletes wearing the Device and compared to a similar population not wearing the device. Secondly, the purpose is to determine the protection of the device relative to amount and magnitude of sustained head impacts.


Clinical Trial Description

The Device has the promise of providing a novel mechanism for reducing or preventing the likelihood of TBI, and may be used in conjunction with other protective equipment. TBI is the leading cause of death in individuals under age 45. The cost of TBI in the U.S. is estimated at anywhere from $50 to $150 billion, annually. The January, 2008 New England Journal of Medicine reports, "Head and neck injuries, including severe brain trauma, have been reported in one quarter of service members who have been evacuated from Iraq and Afghanistan". The vast majority of these injuries have resulted from exposure to improvised explosive device (IED) blast waves. Head injuries, concussions and the resulting trauma have been in public discussion recently as the National Football League (NFL) deals with a lawsuit regarding head injuries by about one-third of living former NFL players. According to NASA, "The oscillation of a fluid caused by an external force, called sloshing, occurs in moving vehicles containing liquid masses, such as trucks, etc." This oscillation occurs when a vessel is only partially filled. It is hypothesized that the brain faces similar slosh energy absorption during external force impartation. Slosh permits external energies to be absorbed by the contents of a partially filled vessel or container by means of inelastic collisions. Tissues of differing densities can decelerate at different rates creating shear and cavitation. If the collisions between objects or molecules are elastic, the transfer of energies to those objects diminishes, minimizing the energies imparted by slosh. Woodpeckers, head ramming sheep and all mammals (including humans) have small, little known and misunderstood muscles in their necks called the omohyoid muscles. Highly G-tolerant creatures of the forest have utilized these muscles to gently restrict outflow of the internal jugular veins thereby "taking up" the excess compliance of the cranial space and ultimately protecting themselves from TBI like tiny "airbags" in a motor vehicle. Rat studies by have demonstrated that we can easily and safely facilitate this muscle's actions by a well-engineered gentle compression over those muscles. The medical Queckenstedt Maneuver devised to detect spinal cord compression, gently places pressure over the external jugular veins to increase cerebral spinal volume and pressure. In this maneuver, the veins are compressed while a lumbar puncture monitors the intracranial pressure. "Normally, the pressure rise to the higher 'plateau' level occurs instantly upon jugular compression to fall again equally fast upon release of the compression". This incredibly simple principle can be employed to protect soldiers and athletes from TBI by safely, and reversibly, increasing intracranial volume and pressure. The neck collar device is made of Outer collar - hytrel (thermoplastic elastomer), Inner collar - TPSiV (thermoplastic elastomer), metal insert (stainless steel), and is fitted to the neck to provide a comfortable and precise jugular compression that potentially mitigates cerebral slosh. Although the skull, blood, and brain are "almost incompressible," the vasculature tree of the cerebrum is quite reactive and compressible. As volume is added to the cranium, eventually the compensatory reserve volume is surpassed and the intracranial pressure increases slightly. Increasing cerebral blood volume by just 1-3% safely and reversibly reduces compliance of the cerebral vascular tree and diminishes absorption of slosh energies. Jugular compression increases cerebral blood volume almost instantaneously. As mentioned, this degree of increase has significantly mitigated slosh and TBI in laboratory animals and mimics the highly concussion resistant wild animals that are able to reflexively increase cerebral blood volume through natural jugular compression. A landmark article, published in the Journal of Neurosurgery, used a standard acceleration-deceleration impact laboratory model of mild TBI. The study showed a successful and marked reduction of axonal injury following Internal Jugular Vein (IJV) compression as indicated by immunohistochemical staining of Amyloid Precursor Proteins (APP). It is argued that IJV compression reduces slosh-mediated brain injury by increasing intracranial blood volume and reducing the compliance and potential for brain movement within the confines of the skull. The potential for such technique to mitigate both linear and rotational brain injury in humans by "internal protection" represents the most novel approach to mitigating TBI. The current project will be designed following a prospective longitudinal study design. All MRI scanning will be performed on a 3 Tesla Philips Achieva MRI scanner located in Imaging Research Center (IRC) in the Cincinnati Children's Hospital Research Foundation (CCHRF). Sedation will not be used for any of the test visits. The entire MRI series, including anatomical imaging, DTI, resting state fMRI, SWI, HARDI, ASL and BOLD will be completed in 65 minutes or less (see Table 1 for detailed specifications). All functional and neurocognitive testing will be performed at the Cincinnati Children's Hospital Human Performance Laboratory. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02696200
Study type Interventional
Source Children's Hospital Medical Center, Cincinnati
Contact
Status Completed
Phase N/A
Start date May 2015
Completion date June 2017

See also
  Status Clinical Trial Phase
Completed NCT03304327 - Mindfulness and Yoga Training for Athletes With Concussion (MYTAC) N/A
Completed NCT05562544 - EEG Diagnostic for Repetitive Sub-concussive Head Impacts
Terminated NCT02988609 - Concussion in Rugby Players: a Pilot Study of Neural Recovery Using fMRI N/A
Completed NCT02710123 - Sub-Threshold Exercise Treatment for Adolescents With Sports Related Concussion N/A
Terminated NCT02100150 - A Safety and Efficacy Study of NNZ-2566 in Patients With Mild Traumatic Brain Injury (mTBI) Phase 2
Active, not recruiting NCT01874847 - PLAY GAME: Post-concussion Syndrome in Youth - Assessing the GABAergic Effects of Melatonin Phase 2/Phase 3
Completed NCT02262507 - Concussion Device Audiological Measures N/A
Completed NCT01903525 - DHA For The Treatment of Pediatric Concussion Related to Sports Injury Phase 1
Enrolling by invitation NCT05948501 - The Effects of Concussion on Gait and Posture in Individuals With Peripheral Vision Loss
Withdrawn NCT02643836 - Pulsed Electromagnetic Field (PEMF) Therapy for Post-Concussive Syndrome N/A
Recruiting NCT03360786 - Primary Prevention of Concussion in Youth Ice Hockey Players N/A
Recruiting NCT03710109 - Evaluation of an EEG Based Concussion System
Not yet recruiting NCT02930395 - Blood Biomarkers for the Management of Concussion in Professional Rugby Players N/A
Completed NCT02268240 - Care for Post-Concussive Symptoms N/A
Completed NCT02271451 - Q-collar and Brain Injury Biomarkers N/A
Completed NCT02278029 - Driving Performance of Teenage Patients With mTBI: a Longitudinal Assessment N/A
Completed NCT02268058 - Use of Ibuprofen and Acetaminophen for Treatment of Acute Headache Post Concussion in Children N/A
Active, not recruiting NCT03608722 - Video Games to Track Cognitive Health N/A
Completed NCT02556177 - Advanced MRI Applications for Mild Traumatic Brain Injury-Phase 2 N/A
Completed NCT02660164 - A Study to Assess the Effectiveness of the Nautilus BrainPulseâ„¢ as an Aid in the Diagnosis of Concussion