Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04624776
Other study ID # EudraCT: 2020-000855-11
Secondary ID
Status Completed
Phase Phase 2
First received
Last updated
Start date October 10, 2020
Est. completion date February 28, 2023

Study information

Verified date March 2023
Source Rigshospitalet, Denmark
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Comatose patients resuscitated from Out-of-Hospital Cardiac Arrest (OHCA) often develop a complicated systemic inflammatory response and have a poor prognosis with neurological damage being the most common cause of death. This study will investigate the anti-inflammatory and neuroprotective effect of early treatment with the glucocorticoid methylprednisolone measured by interleukin-6 and neuron-specific enolase levels in resuscitated comatose OHCA-patients.


Description:

BACKGROUND: Each year approximately 5400 individuals suffer from Out-of-Hospital Cardiac Arrest (OHCA) in Denmark and despite an improved prognosis 30-day mortality is around 90%. For OHCA patients resuscitated successfully and admitted to an Intensive Care Unit (ICU) the 30-day mortality remains higher than 50% due to a complicated systemic response, referred to as the Post Cardiac Arrest Syndrome (PCAS). PCAS consists of four interacting components: 1) ischemic/reperfusion brain injury, 2) myocardial dysfunction, 3) a systemic inflammatory response and 4) persistent stress from the triggering cause of the cardiac arrest, e.g. acute myocardial infarction. PCAS progresses during the first 1-2 days following resuscitated cardiac arrest, and the treatment aims to reduce neurologic injury by cooling the patient to 33-36° C, circulatory support with vasopressors, inotropics or mechanical devices as well as identification and treatment of reversible causes to the cardiac arrest, e.g. acute revascularization of an AMI. Several studies have shown that the systemic inflammatory response is associated with a high risk of poor outcome following OHCA. Inflammatory markers associated with poor outcome include interleukin (IL) 6, high sensitivity C-reactive protein (hsCRP), leucocytes, IL-1b, IL-10, IL-13, tumor necrosis factor alpha (TNF-alpha) and procalcitonin. Despite of this, there is no specific treatment that addresses this complicated and life-threatening systemic response, and guidelines remain inconclusive in this field. Anoxic irreversible brain injury remains the leading cause of death following resuscitated OHCA. The complex mechanism is one of the components in the PCAS and is thought to develop due to neuron apoptosis and reperfusion/ischemic injury. Further, the biomarker neuron-specific enolase (NSE) is correlated to neuron damage in the blood stream and has a strong predictive value for poor outcome following OHCA. Inhibiting the causes of the systemic inflammatory response and thereby potentially the brain injury in the very early stages following resuscitation from OHCA may therefore be key to optimizing post-cardiac arrest care. Following resuscitated OHCA, the function of the adrenal gland is compromised due to global ischemia and reduced levels of the hormone steroid, glucocorticoid, are produced. Glucocorticoid has an important role in several physiologic processes including an anti-inflammatory systemic response. As a result, resuscitated cardiac arrest patients are affected by a severe inflammatory response, while the natural defense mechanism of the body to modulate inflammation is suppressed. Systemic treatment with steroids serves as an anti-inflammatory mediator and counteracts acute microcirculation injury and free radical formation, resulting in diminished vasodilation and reduction of edema, e.g. brain edema. Two small studies have shown signs of improved survival and neurologic outcome among patients who was given injections with glucocorticoids after in-hospital cardiac arrest. The incidence of adverse events was not higher in patients receiving glucocorticoids. Long-term treatment with glucocorticoids is associated with a series of side effects, whereas short-term treatment only has a few side effects. Systemic treatment with glucocorticoids could therefore be an important and safe factor in the treatment of resuscitated cardiac arrest patients that could potentially improve survival and neurological outcome. Methylprednisolone and other glucocorticoids are used in pulse doses (>250 mg prednisolone equivalent a day) in various acute immunologically mediated conditions/diseases such as organ transplantation to prevent organ rejection and certain rheumatic diseases with acute deterioration. All these conditions are associated with a severe inflammatory response, as seen in PCAS, and therefore methylprednisolone doses as high as 30 mg/kg (equivalent of 2.1 g for a person weighing 70 kg) are used in pulse therapy to obtain an adequate response and effect. Further, the advantage of pulse dose glucocorticoid treatment is better efficacy, but also a decrease in side effects due to a reduced need for longer lasting therapy exceeding days or weeks. The literature reports of possible cardiovascular side effects as bradycardia and arrhythmias associated to infusion of pulse doses of methylprednisolone/glucocorticoids if given within a short period of time, but the evidence is limited and not well supported. The Danish summary of product characteristics recommends an initial infusion of Solu-Medrol to be administered over a period of at least five minutes. Based on the above knowledge the intervention in this study is 250 mg of methylprednisolone administered intravenously as a bolus infusion over five minutes. In summary, following resuscitated OHCA, PCAS, a severe and life-threatening condition, is often developed. PCAS is associated with increased mortality and poor neurological outcome. Inhibition of this inflammatory response may have an important, yet relatively unknown, role in post-cardiac arrest care. HYPOTHESIS: Bolus infusion of 250 mg methylprednisolone in the pre-hospital setting will inhibit the systemic inflammatory response and minimize the degree of neurological injury in comatose, resuscitated Out-of-Hospital Cardiac Arrest (OHCA) patients. SAMPLE SIZE: The trial is powered at the co-primary endpoint. The investigators chose a priori to power the trial at the 'weakest' of the two endpoints, ensuring a sufficient power for both endpoints. As the investigators were not able to find data regarding the effect of methylprednisolone on IL-6 levels or NSE levels from OHCA admission, the trial was powered towards a single measurement drawn 48 hours after admission. In 171 patients from the investigators institution the mean (logarithmically transformed to approximate normal distribution) IL-6 level after 48 hours from admission was 4.19±1.27 (unpublished data). The investigators assumed that methylprednisolone would reduce the IL-6 level by 20%. With an α-level of 0.025, the trial would achieve a power of 0.90 if 112 patients were included. The mean (logarithmically transformed to approximate normal distribution) NSE level after 48 hours was 3.21±0.96 after 48 hours from admission (unpublished data). The investigators assumed that methylprednisolone would reduce the NSE level by 20%. With an α-level of 0.025, the trial would achieve a power of 0.90 if 114 patients were included. The investigators aimed to include 120 patients, to adjust for missingness due to withdrawn consent. Further, since a proportion of the patients were expected to die before complete assessment of the co-primary endpoint (i.e. blood sampling at 72 hours), randomization of patients will continue until a total of 120 patients have survived to blood sampling at 72 hours.


Recruitment information / eligibility

Status Completed
Enrollment 158
Est. completion date February 28, 2023
Est. primary completion date July 15, 2022
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: 1. Age =18 years 2. OHCA of presumed cardiac cause 3. Unconsciousness (GCS =8) upon pre-hospital randomization 4. Sustained ROSC for at least 5 minutes 5. Randomization and start of study medicine infusion within 30 minutes of sustained ROSC. Exclusion Criteria: 1. Advanced life support termination-of-resuscitation exclusion criteria 2. Asystole as primary ECG rhythm 3. Women of childbearing capacity 4. Known therapy limitation 5. Known allergy to methylprednisolone 6. Known pre-arrest modified Rankin Scale (mRS) score of 4-5 7. Temperature upon randomization <30° C 8. >30 minutes to sustained ROSC.

Study Design


Intervention

Drug:
Methylprednisolone
A dosis of 250 mg methylprednisolone is suspended in isotonic saline to a total volume of 4 mL prior to infusion.
Isotonic saline
A bolus infusion of 4 mL isotonic saline (NaCl 0.9%).

Locations

Country Name City State
Denmark Rigshospitalet Copenhagen
Denmark Gentofte Hospital Gentofte

Sponsors (1)

Lead Sponsor Collaborator
Christian Hassager

Country where clinical trial is conducted

Denmark, 

References & Publications (32)

Altunbas G, Sucu M, Zengin O. Ventricular repolarization disturbances after high dose intravenous methylprednisolone Theraphy. J Electrocardiol. 2018 Jan-Feb;51(1):140-144. doi: 10.1016/j.jelectrocard.2017.07.017. Epub 2017 Aug 1. — View Citation

Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). 1998 Jun;94(6):557-72. doi: 10.1042/cs0940557. — View Citation

Barnes PJ. Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol Allergy Clin North Am. 2005 Aug;25(3):451-68. doi: 10.1016/j.iac.2005.05.003. — View Citation

Bro-Jeppesen J, Kjaergaard J, Stammet P, Wise MP, Hovdenes J, Aneman A, Horn J, Devaux Y, Erlinge D, Gasche Y, Wanscher M, Cronberg T, Friberg H, Wetterslev J, Pellis T, Kuiper M, Nielsen N, Hassager C; TTM-Trial Investigators. Predictive value of interleukin-6 in post-cardiac arrest patients treated with targeted temperature management at 33 degrees C or 36 degrees C. Resuscitation. 2016 Jan;98:1-8. doi: 10.1016/j.resuscitation.2015.10.009. Epub 2015 Oct 23. — View Citation

Bro-Jeppesen J, Kjaergaard J, Wanscher M, Nielsen N, Friberg H, Bjerre M, Hassager C. Systemic Inflammatory Response and Potential Prognostic Implications After Out-of-Hospital Cardiac Arrest: A Substudy of the Target Temperature Management Trial. Crit Care Med. 2015 Jun;43(6):1223-32. doi: 10.1097/CCM.0000000000000937. — View Citation

Buttgereit F, da Silva JA, Boers M, Burmester GR, Cutolo M, Jacobs J, Kirwan J, Kohler L, Van Riel P, Vischer T, Bijlsma JW. Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: current questions and tentative answers in rheumatology. Ann Rheum Dis. 2002 Aug;61(8):718-22. doi: 10.1136/ard.61.8.718. — View Citation

Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, Zimmerman JL. Part 8: Post-Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015 Nov 3;132(18 Suppl 2):S465-82. doi: 10.1161/CIR.0000000000000262. No abstract available. Erratum In: Circulation. 2017 Sep 5;136(10 ):e197. — View Citation

Caplan A, Fett N, Rosenbach M, Werth VP, Micheletti RG. Prevention and management of glucocorticoid-induced side effects: A comprehensive review: A review of glucocorticoid pharmacology and bone health. J Am Acad Dermatol. 2017 Jan;76(1):1-9. doi: 10.1016/j.jaad.2016.01.062. — View Citation

Dietrich J, Rao K, Pastorino S, Kesari S. Corticosteroids in brain cancer patients: benefits and pitfalls. Expert Rev Clin Pharmacol. 2011 Mar;4(2):233-42. doi: 10.1586/ecp.11.1. — View Citation

Dragancea I, Rundgren M, Englund E, Friberg H, Cronberg T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation. 2013 Mar;84(3):337-42. doi: 10.1016/j.resuscitation.2012.09.015. Epub 2012 Sep 20. — View Citation

Fries M, Kunz D, Gressner AM, Rossaint R, Kuhlen R. Procalcitonin serum levels after out-of-hospital cardiac arrest. Resuscitation. 2003 Oct;59(1):105-9. doi: 10.1016/s0300-9572(03)00164-3. — View Citation

Hekimian G, Baugnon T, Thuong M, Monchi M, Dabbane H, Jaby D, Rhaoui A, Laurent I, Moret G, Fraisse F, Adrie C. Cortisol levels and adrenal reserve after successful cardiac arrest resuscitation. Shock. 2004 Aug;22(2):116-9. doi: 10.1097/01.shk.0000132489.79498.c7. — View Citation

Jacobs JW, Geenen R, Evers AW, van Jaarsveld CH, Kraaimaat FW, Bijlsma JW. Short term effects of corticosteroid pulse treatment on disease activity and the wellbeing of patients with active rheumatoid arthritis. Ann Rheum Dis. 2001 Jan;60(1):61-4. doi: 10.1136/ard.60.1.61. — View Citation

Langford CA. Management of systemic vasculitis. Best Pract Res Clin Rheumatol. 2001 Jun;15(2):281-97. doi: 10.1053/berh.2001.0144. — View Citation

Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004 Nov;30(11):2126-8. doi: 10.1007/s00134-004-2425-z. Epub 2004 Sep 9. — View Citation

Mentzelopoulos SD, Malachias S, Chamos C, Konstantopoulos D, Ntaidou T, Papastylianou A, Kolliantzaki I, Theodoridi M, Ischaki H, Makris D, Zakynthinos E, Zintzaras E, Sourlas S, Aloizos S, Zakynthinos SG. Vasopressin, steroids, and epinephrine and neurologically favorable survival after in-hospital cardiac arrest: a randomized clinical trial. JAMA. 2013 Jul 17;310(3):270-9. doi: 10.1001/jama.2013.7832. — View Citation

Mentzelopoulos SD, Zakynthinos SG, Tzoufi M, Katsios N, Papastylianou A, Gkisioti S, Stathopoulos A, Kollintza A, Stamataki E, Roussos C. Vasopressin, epinephrine, and corticosteroids for in-hospital cardiac arrest. Arch Intern Med. 2009 Jan 12;169(1):15-24. doi: 10.1001/archinternmed.2008.509. — View Citation

Morrison LJ, Verbeek PR, Vermeulen MJ, Kiss A, Allan KS, Nesbitt L, Stiell I. Derivation and evaluation of a termination of resuscitation clinical prediction rule for advanced life support providers. Resuscitation. 2007 Aug;74(2):266-75. doi: 10.1016/j.resuscitation.2007.01.009. Epub 2007 Mar 23. — View Citation

Morrison LJ, Visentin LM, Kiss A, Theriault R, Eby D, Vermeulen M, Sherbino J, Verbeek PR; TOR Investigators. Validation of a rule for termination of resuscitation in out-of-hospital cardiac arrest. N Engl J Med. 2006 Aug 3;355(5):478-87. doi: 10.1056/NEJMoa052620. — View Citation

Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Bottiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC, Kern KB, Laurent I, Longstreth WT Jr, Merchant RM, Morley P, Morrison LJ, Nadkarni V, Peberdy MA, Rivers EP, Rodriguez-Nunez A, Sellke FW, Spaulding C, Sunde K, Vanden Hoek T. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008 Dec 2;118(23):2452-83. doi: 10.1161/CIRCULATIONAHA.108.190652. Epub 2008 Oct 23. No abstract available. — View Citation

Peberdy MA, Andersen LW, Abbate A, Thacker LR, Gaieski D, Abella BS, Grossestreuer AV, Rittenberger JC, Clore J, Ornato J, Cocchi MN, Callaway C, Donnino M; National Post Arrest Research Consortium (NPARC) Investigators. Inflammatory markers following resuscitation from out-of-hospital cardiac arrest-A prospective multicenter observational study. Resuscitation. 2016 Jun;103:117-124. doi: 10.1016/j.resuscitation.2016.01.006. Epub 2016 Jan 27. — View Citation

Sasson C, Rogers MA, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2010 Jan;3(1):63-81. doi: 10.1161/CIRCOUTCOMES.109.889576. Epub 2009 Nov 10. — View Citation

Schneider A, Bottiger BW, Popp E. Cerebral resuscitation after cardiocirculatory arrest. Anesth Analg. 2009 Mar;108(3):971-9. doi: 10.1213/ane.0b013e318193ca99. — View Citation

Schultz CH, Rivers EP, Feldkamp CS, Goad EG, Smithline HA, Martin GB, Fath JJ, Wortsman J, Nowak RM. A characterization of hypothalamic-pituitary-adrenal axis function during and after human cardiac arrest. Crit Care Med. 1993 Sep;21(9):1339-47. doi: 10.1097/00003246-199309000-00018. — View Citation

Sinha A, Bagga A. Pulse steroid therapy. Indian J Pediatr. 2008 Oct;75(10):1057-66. doi: 10.1007/s12098-008-0210-7. Epub 2008 Nov 21. — View Citation

Soholm H, Wachtell K, Nielsen SL, Bro-Jeppesen J, Pedersen F, Wanscher M, Boesgaard S, Moller JE, Hassager C, Kjaergaard J. Tertiary centres have improved survival compared to other hospitals in the Copenhagen area after out-of-hospital cardiac arrest. Resuscitation. 2013 Feb;84(2):162-7. doi: 10.1016/j.resuscitation.2012.06.029. Epub 2012 Jul 13. — View Citation

Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Aneman A, Horn J, Devaux Y, Erlinge D, Kjaergaard J, Gasche Y, Wanscher M, Cronberg T, Friberg H, Wetterslev J, Pellis T, Kuiper M, Gilson G, Nielsen N; TTM-Trial Investigators. Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33 degrees C and 36 degrees C. J Am Coll Cardiol. 2015 May 19;65(19):2104-14. doi: 10.1016/j.jacc.2015.03.538. Erratum In: J Am Coll Cardiol. 2015 Aug 25;66(8):983. J Am Coll Cardiol. 2017 Apr 25;69(16):2104. — View Citation

Stub D, Bernard S, Duffy SJ, Kaye DM. Post cardiac arrest syndrome: a review of therapeutic strategies. Circulation. 2011 Apr 5;123(13):1428-35. doi: 10.1161/CIRCULATIONAHA.110.988725. No abstract available. — View Citation

Vaahersalo J, Skrifvars MB, Pulkki K, Stridsberg M, Rosjo H, Hovilehto S, Tiainen M, Varpula T, Pettila V, Ruokonen E; FINNRESUSCI Laboratory Study Group. Admission interleukin-6 is associated with post resuscitation organ dysfunction and predicts long-term neurological outcome after out-of-hospital ventricular fibrillation. Resuscitation. 2014 Nov;85(11):1573-9. doi: 10.1016/j.resuscitation.2014.08.036. Epub 2014 Sep 17. — View Citation

Varvarousi G, Stefaniotou A, Varvaroussis D, Xanthos T. Glucocorticoids as an emerging pharmacologic agent for cardiopulmonary resuscitation. Cardiovasc Drugs Ther. 2014 Oct;28(5):477-88. doi: 10.1007/s10557-014-6547-4. — View Citation

Vasheghani-Farahani A, Sahraian MA, Darabi L, Aghsaie A, Minagar A. Incidence of various cardiac arrhythmias and conduction disturbances due to high dose intravenous methylprednisolone in patients with multiple sclerosis. J Neurol Sci. 2011 Oct 15;309(1-2):75-8. doi: 10.1016/j.jns.2011.07.018. Epub 2011 Aug 9. — View Citation

Wiberg S, Hassager C, Schmidt H, Thomsen JH, Frydland M, Lindholm MG, Hofsten DE, Engstrom T, Kober L, Moller JE, Kjaergaard J. Neuroprotective Effects of the Glucagon-Like Peptide-1 Analog Exenatide After Out-of-Hospital Cardiac Arrest: A Randomized Controlled Trial. Circulation. 2016 Dec 20;134(25):2115-2124. doi: 10.1161/CIRCULATIONAHA.116.024088. Epub 2016 Nov 12. — View Citation

* Note: There are 32 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Concentration of IL-6 Interleukin 6 (ng/L) Daily measurements from admission to 72 hours after admission
Primary Concentration of NSE Neuron-specific-enolase (ng/L) Daily measurements from admission to 72 hours after admission
Secondary Markers of inflammation, biomarkers High sensitivity C-reactive protein (hsCRP, mg/L) and plasma cytokine levels exemplified by IL-6 (ng/L) Daily measurements the first three days following admission
Secondary Markers of inflammation, cell count Leucocyte- and differential count (thousand cells/µL) Daily measurements the first three days following admission
Secondary Markers of kidney and hepatic injury Creatinine, ALAT, ASAT, BF and bilirubin (all in mg/L) Daily measurements the first three days following admission
Secondary Marker of the coagulation system, biomarker Plasma fibrinogen (mg/L) Plasma fibrinogen the first three days from admission
Secondary Marker of the coagulation system, functional analysis Thromboelastography (TEG, measured in minutes) Thromboelastography at admission and at 48 hours
Secondary Hemodynamics, Swan-Ganz catheter Measurements on Swan-Ganz catheter (CVP, PAP, PCWP - all in mmHg) Daily Swan-Ganz catheter measurements the first five days from admission
Secondary Hemodynamics, arterial blood gasses (Lactate) Arterial blood gasses (Lactate in mmol/L) Arterial blood gasses bihourly the first 36 hours
Secondary Hemodynamics, arterial blood gasses Arterial blood gasses (PaO2 and PaCO2 in kPa) Arterial blood gasses bihourly the first 36 hours
Secondary Neuroprotection, biomarkers Biomarkers TAU, NFL, NFM, NFH and GFAP (all in mmol/L) Biomarkers the first three days from admission
Secondary Cardiac protection, biomarkers TnT, TnI and CKMB (all in mmol/L). Biomarkers the first three days from admission
Secondary Clinical endpoint, survival Survival (yes/no, register based data from "The Medical Register of Births and Deaths" in Denmark) 180 days following discharge
Secondary Clinical endpoint, neurological outcome by mRS score Neurological outcome (modified Rankin Scale score, 0-6 symptom scale with higher scores indicating more severe symptoms) After five days of admission and at 30- and 180- days following discharge
Secondary Safety, adverse events Cumulated incidence of adverse events From admission till 7 days following admission
See also
  Status Clinical Trial Phase
Recruiting NCT06048068 - Removing Surrogates' Uncertainty to Reduce Fear and Anxiety After Cardiac Events N/A
Recruiting NCT05558228 - Accuracy of Doppler Ultrasound Versus Manual Palpation of Pulse in Cardiac Arrest
Completed NCT03685383 - Cytokine Adsorption in Post-cardiac Arrest Syndrome in Patients Requiring Extracorporeal Cardiopulmonary Resuscitation N/A
Completed NCT04619498 - Effectiveness of an Interactive Cognitive Support Tablet App to Improve the Management of Pediatric Cardiac Arrest N/A
Completed NCT04584645 - A Digital Flu Intervention for People With Cardiovascular Conditions N/A
Not yet recruiting NCT05649891 - Checklists Resuscitation Emergency Department N/A
Withdrawn NCT02352350 - Lactate in Cardiac Arrest N/A
Completed NCT03024021 - Cerebral Oxymetry and Neurological Outcome in Therapeutic Hypothermia
Completed NCT02247947 - Proteomics to Identify Prognostic Markers After CPR and to Estimate Neurological Outcome
Completed NCT02275234 - Care After Resuscitation
Completed NCT01944605 - Intestinal Ischemia as a Stimulus for Systemic Inflammatory Response After Cardiac Arrest N/A
Completed NCT01972087 - Simulation Training to Improve 911 Dispatcher Identification of Cardiac Arrest N/A
Completed NCT01936597 - Prospective Study of 3 Phone Assistance Strategies to Achieve a Continuous Cardiac Massage N/A
Active, not recruiting NCT01239420 - Norwegian Cardio-Respiratory Arrest Study
Completed NCT00880087 - Therapeutic Hypothermia to Improve Survival After Cardiac Arrest in Pediatric Patients-THAPCA-IH [In Hospital] Trial N/A
Completed NCT01191736 - Ultra-Brief Versus Brief Hands Only CPR Video Training With and Without Psychomotor Skill Practice N/A
Completed NCT00878644 - Therapeutic Hypothermia to Improve Survival After Cardiac Arrest in Pediatric Patients-THAPCA-OH [Out of Hospital] Trial Phase 3
Completed NCT00729794 - Vasopressin, Epinephrine, and Steroids for Cardiac Arrest Phase 3
Recruiting NCT00441753 - Cerebral Bloodflow and Carbondioxide Reactivity During Mild Therapeutic Hypothermia in Patients After Cardiac Arrest N/A
Completed NCT00347477 - Fluid Shifts in Patients Treated With Therapeutic Hypothermia After Cardiac Arrest Phase 3