Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to evaluate the effect of breathing a slightly reduced amount of oxygen will have on a rescuer's ability to provide chest compressions during CPR.


Clinical Trial Description

Cardiac arrest can occur in any setting, even flying on a commercial airliner, and chest compressions are a critical, lifesaving component of cardiopulmonary resuscitation (CPR). If a cardiac arrest occurs on board a commercial flight, CPR may be administered by cabin crew members or health care professionals who are passengers and volunteer their assistance. The in-flight environment presents significant challenges, including an unfamiliar environment, an unknown patient, cramped space, and the fact that the pressure altitude in the cabin is between 6,000 feet and 8,000 feet. Even though the fraction of inspired oxygen (FiO2) is still 0.21, with decreased pressure the rescuer is effectively breathing a FiO2 of 0.15 and is mildly hypoxic. Although the decreased PaO2 seen in even in healthy passengers is a normal occurrence when flying on a commercial airliner, it may impair the ability of a rescuer to perform adequate CPR. Administering supplemental oxygen to the rescuer may enable provision of more effective chest compressions. In this study, we will measure the quality of chest compressions in normoxic and hypoxic conditions during short simulation scenarios. We hypothesize that chest compressions will be more effective in a normoxic environment. All tasks are being performed for research purposes. All tasks will take place at the University of Chicago in an empty conference room. After the pre-study screening survey, subjects will be asked to perform chest compressions during a simulated cardiac arrest and will then fill out a survey. Subjects will participate in 2 sessions each; the sessions will be at least one day apart. During each session, the subject will wear a face mask. Subjects will be randomized and blinded to one of two conditions: During CPR, the subject will receive a FiO2 of 0.21 or 0.15 by face mask, which will produce a partial pressure of oxygen similar to, but slightly higher than, that of a commercial airliner. The gas mixture will be delivered by a normobaric hypoxia training device. During the second session, subjects will receive the other oxygen concentration. Each session will consist of a simulation in which a passenger on an airplane (i.e., a mannequin) has an asystolic cardiac arrest. Participants will provide compression-only CPR. Every 2 minutes, the preceptor will ask the subject stop compressions for 10 seconds for a pulse and rhythm check, similar to actual established protocols. The participant will be wearing a pulse oximeter. The scenario will end after 30 minutes (14 rounds of 2 minutes each of CPR by the subject, consistent with the Universal Guidelines for Termination of CPR), or if the subject becomes fatigued and wishes to stop or is no longer providing high quality chest compressions. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04072484
Study type Interventional
Source University of Chicago
Contact
Status Terminated
Phase N/A
Start date August 16, 2019
Completion date October 1, 2020

See also
  Status Clinical Trial Phase
Recruiting NCT06048068 - Removing Surrogates' Uncertainty to Reduce Fear and Anxiety After Cardiac Events N/A
Recruiting NCT05558228 - Accuracy of Doppler Ultrasound Versus Manual Palpation of Pulse in Cardiac Arrest
Completed NCT03685383 - Cytokine Adsorption in Post-cardiac Arrest Syndrome in Patients Requiring Extracorporeal Cardiopulmonary Resuscitation N/A
Completed NCT04619498 - Effectiveness of an Interactive Cognitive Support Tablet App to Improve the Management of Pediatric Cardiac Arrest N/A
Completed NCT04584645 - A Digital Flu Intervention for People With Cardiovascular Conditions N/A
Not yet recruiting NCT05649891 - Checklists Resuscitation Emergency Department N/A
Withdrawn NCT02352350 - Lactate in Cardiac Arrest N/A
Completed NCT03024021 - Cerebral Oxymetry and Neurological Outcome in Therapeutic Hypothermia
Completed NCT02247947 - Proteomics to Identify Prognostic Markers After CPR and to Estimate Neurological Outcome
Completed NCT02275234 - Care After Resuscitation
Completed NCT01944605 - Intestinal Ischemia as a Stimulus for Systemic Inflammatory Response After Cardiac Arrest N/A
Completed NCT01936597 - Prospective Study of 3 Phone Assistance Strategies to Achieve a Continuous Cardiac Massage N/A
Completed NCT01972087 - Simulation Training to Improve 911 Dispatcher Identification of Cardiac Arrest N/A
Active, not recruiting NCT01239420 - Norwegian Cardio-Respiratory Arrest Study
Completed NCT01191736 - Ultra-Brief Versus Brief Hands Only CPR Video Training With and Without Psychomotor Skill Practice N/A
Completed NCT00878644 - Therapeutic Hypothermia to Improve Survival After Cardiac Arrest in Pediatric Patients-THAPCA-OH [Out of Hospital] Trial Phase 3
Completed NCT00880087 - Therapeutic Hypothermia to Improve Survival After Cardiac Arrest in Pediatric Patients-THAPCA-IH [In Hospital] Trial N/A
Completed NCT00729794 - Vasopressin, Epinephrine, and Steroids for Cardiac Arrest Phase 3
Recruiting NCT00441753 - Cerebral Bloodflow and Carbondioxide Reactivity During Mild Therapeutic Hypothermia in Patients After Cardiac Arrest N/A
Completed NCT00347477 - Fluid Shifts in Patients Treated With Therapeutic Hypothermia After Cardiac Arrest Phase 3