Clinical Trials Logo

Cardiac Arrest clinical trials

View clinical trials related to Cardiac Arrest.

Filter by:

NCT ID: NCT06067464 Recruiting - Cardiac Arrest Clinical Trials

Evaluation of Perfusion Index as a Prognostication Tool for High Quality Cardiopulmonary Resuscitation

Start date: August 23, 2023
Phase:
Study type: Observational

In order to monitor and improve cardiopulmonary resuscitation(CPR) quality, there is need for tools that provide real time feedback to responders. The use of invasive arterial pressure monitoring and end tidal carbon dioxide (ETCO2) as quality measures of CPR. Invasive pressure measurements are timeconsuming and cumbersome in resuscitation situations, and are very rarely practical. ETCO2 measurements require presence of a capnometer with an advanced airway. High quality chest compression will result inETCO2 between 2-2.5KPa. A rapid increase in ETCO2 on waveform capnography may enable ROSC to be detected while continuing chest compression and can be used as a tool to withhold the next dose of bolus adrenaline injection. Pulse oximetry, which noninvasively detects the blood flow of peripheral tissue, has achieved widespread clinical use. It was noticed that the pulse waveform frequency can reflect the rate and interruption time of chest compression(CC) during cardiopulmonary resuscitation(CPR). The perfusion index (PI) is obtained from pulse oximetry and is computed as the ratio of the pulsatile (alternating current) signal to the non-pulsatile (direct current) signal of infra-red light, expressed as a percentage;PI =ACIR/DCIR∗100% (i.e. AC = pulsatile component of the signal, DC = non-pulsatile component of the signal, IR = infrared light). PI shows the perfusion status of the tissue in the applied area for an instant and a certain time interval. The PI value ranges from 0.02% (very weak) to 20% (strong).Peripheral PI has been proposed for different clinical uses with some applications in critical patients. The purpose of this study is to evaluate the role of pulse-oximeter derived perfusion index for high quality CPR and as aprognostication tool of ROSC during in-hospital cardiac arrest in comparison to ETCO2 reading.

NCT ID: NCT06057688 Recruiting - Pulmonary Embolism Clinical Trials

Construction of Early Warning Model for Pulmonary Complications Risk of Surgical Patients Based on Multimodal Data Fusion

Start date: August 1, 2023
Phase:
Study type: Observational

The goal of this observational study is to establish an intelligent early warning system for acute and critical complications of the respiratory system such as pulmonary embolism and respiratory failure. Based on the electronic case database of the biomedical big data research center and the clinical real-world vital signs big data collected by wearable devices, the hybrid model architecture with multi-channel gated circulation unit neural network and deep neural network as the core is adopted, Mining the time series trends of multiple vital signs and their linkage change characteristics, integrating the structural nursing observation, laboratory examination and other multimodal clinical information to establish a prediction model, so as to improve patient safety, and lay the foundation for the later establishment of a higher-level and more comprehensive artificial intelligence clinical nursing decision support system. Issues addressed in this study 1. The big data of vital signs of patients collected in real-time by wearable devices were used to explore the internal relationship between the change trend of vital signs and postoperative complications (mainly including infection complications, respiratory failure, pulmonary embolism, cardiac arrest). Supplemented with necessary nursing observation, laboratory examination and other information, and use machine learning technology to build a prediction model of postoperative complications. 2. Develop the prediction model into software to provide auxiliary decision support for clinical medical staff, and lay the foundation for the later establishment of a higher-level and more comprehensive AI clinical decision support system.

NCT ID: NCT06048068 Recruiting - Cardiac Arrest Clinical Trials

Removing Surrogates' Uncertainty to Reduce Fear and Anxiety After Cardiac Events

RESURFACE
Start date: September 7, 2023
Phase: N/A
Study type: Interventional

The goal of this study is to test the feasibility and acceptability of an informational website to reduce uncertainty, psychological distress, and caregiver burden among close family members of cardiac arrest patients. The investigators hypothesize that participants who receive access to the website will have lower rates of uncertainty, psychological distress, and caregiver burden at 3 months post-hospital discharge compared to participants who receive usual care.

NCT ID: NCT06044922 Not yet recruiting - Cardiac Arrest Clinical Trials

Heart Rate Variability in Early Prediction of a Noxic Brain Injury After Cardiac Arrest

HEAVENwARd
Start date: April 15, 2024
Phase:
Study type: Observational

Despite advances in post-resuscitation care of patients with cardiac arrest (CA), the majority of survivors who are treated after restoration of spontaneous circulation (ROSC) will have sequelae of hypoxic-ischemic brain injury ranging from mild cognitive impairment to a vegetative state. Early prognostication in comatose patients after ROSC remains challenging. Recent recommendations suggest carrying out clinical and paraclinical tests during the first 72 h after ROSC, to predict a poor neurological outcome with a specificity greater than 95% (no pupillary and corneal reflexes, bilaterally absent N20 somatosensory evoked potential wave, status myoclonus, highly malignant electroencephalography including suppressed background ± periodic discharges or burst-suppression, neuron-specific enolase (NSE) > 60 µg/L, a diffuse and extensive anoxic injury on brain CT/MRI), but with a low sensitivity due to frequent confounding factors. The heart rate variability (HRV) is a simple and non-invasive technique for assessing the autonomic nervous system function. In patients with a recent myocardial infarction, reduced HRV is associated with an increased risk for malignant arrhythmias or death. In neurology, reduced HRV is associated with a poor outcome in severe brain injury patients and allows to predict early neurological deterioration and recurrent ischemic stroke after acute ischemic stroke. A reduced HRV could be a sensitive, specific and early indicator of diffuse anoxic brain injury after CA. This multicenter prospective cohort study assesses the added value of early HRV (within 24h of ICU admission) for neuroprognostication after cardiac arrest.

NCT ID: NCT06030986 Not yet recruiting - Cardiac Arrest Clinical Trials

Prediction of Outcome in Out-of-Hospital Cardiac Arrest

PREDOHCA
Start date: May 31, 2024
Phase:
Study type: Observational

In the course of prehospital respiratory and circulatory arrest, approximately 1000 persons are resuscitated by cardiopulmonary resuscitation in Upper Austria every year. Despite constant further development of methods, equipment and continuous training of the rescue and emergency medical teams working on site, the majority of patients who have to be resuscitated prehospital still die. However, even patients whose circulatory function can be restored during prehospital resuscitation (Return of Spontaneous Circulation, ROSC) require intensive medical care for days to weeks and often find it very difficult to return to a normal, independent life. The success of resuscitation measures depends on the quality of the resuscitation performed as well as on patient-specific factors. Evaluation scales such as the Cerebral Performance Category score (CPC) allow a posteriori assessment of resuscitation success. Nowadays, it is very difficult to estimate the outcome of resuscitation a priori. In many cases, it is not at all clear at the beginning of the treatment pathway whether the individual patient is expected to have an unfavorable prognosis in the context of respiratory arrest or whether a restitutio ad integrum is possible. Thus, the decision to continue or discontinue resuscitation can only be made on the basis of an individual physician's assessment. In addition to the primary concern of stopping resuscitation too early, there is also the risk that medical resources are used beyond the normal level after resuscitation without expecting a successful outcome. Estimating and categorizing the subsequent outcome is difficult and emotionally stressful for the treating team in the acute situation. Some factors that influence outcome are now known: As cerebral hypoperfusion increases, the probability of survival decreases sharply with each passing minute. In this context, potentially reversible causes have been identified in different works, allowing causal therapy to improve neurological outcome. In addition to the most important therapy bridging hypoperfusion, chest compression, with the aim of ensuring minimal perfusion of the brain, immediate defibrillation should be mentioned in particular, which now allows medical laypersons to use defibrillators as part of the Public Access Defibrillation Network. Despite all efforts, however, it is not yet possible to make reliable statements about the probable outcome of persons with respiratory and circulatory arrest with a high degree of certainty in a large number of cases at an early stage. Artificial intelligence refers to the ability of machines to perform cognitive tasks, such as recognizing objects in images and classifying them. For a long time, many processes were too complex to explore through sufficient computing power, storage capacity, and understanding. More recently, however, technological advances have brought machine learning (ML) and the constructs behind it, including those based on so-called neural networks (known since about 1950), back to the fore. Not only the development of theoretical models, but after extensive testing also devices applicable in daily routine operation are available. Modern machine learning methods are enabling a variety of new approaches to assessing operations, including modeling complex systems and finding relationships between models.

NCT ID: NCT05997004 Completed - Cardiac Arrest Clinical Trials

Glycopyrrolate Prophylaxis for Prevention of Bradyarrhythmia During Laparoscopic Cholecystectomy

Start date: May 1, 2018
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to evaluate the incidence of bradycardia during laparoscopic cholecystectomy. The main question[s] it aims to answer are: - Does bradycardia really occurs during pneumoperitoneum/laparoscopic surgery? - If the patient get Glycopyrrolate, Does it really prevent pneumoperitoneum/laparoscopic surgery induced bradycardia?

NCT ID: NCT05978154 Recruiting - Sepsis Clinical Trials

Thigh Muscle Mass and Muscle Wasting in Patients in the Emergency Department

Start date: July 28, 2023
Phase:
Study type: Observational

The goal of this observational study is to evaluate whether thigh muscle mass and muscle wasting are associated with mortality in patients who visit the emergency department. The main questions it aims to answer are: - Is thigh muscle mass associated with mortality in patient who visit the emergency department? - Does muscle wasting exist during staying in the emergency department? - Is muscle wasting associated with mortality in patient who visit the emergency department? Participants will be evaluated for serial thigh muscle mass using point-of-care ultrasound at the emergency department.

NCT ID: NCT05966389 Recruiting - Cardiac Arrest Clinical Trials

Functional MRI to Assess Brain Damage in Cardiac Arrest Patients

Start date: January 1, 2021
Phase:
Study type: Observational

This is a single-center, observational study. Patients after successful cardiopulmonary resuscitation (CPR) will be transferred to the emergency intensive care unit for further standardized management. After successful return of spontaneous circulation (ROSC) for 72h and hemodynamics remained stable for 24h, the post-resuscitated patients underwent functional magnetic resonance imaging (fMRI) examination. During the examination, the supervising physician accompanied the patient and monitored the patient's vital signs using a magnetic resonance monitoring system (Siemens Healthcare Prism, Germany). Patients who are on ventilators are mechanically ventilated using a magnetic ventilator (HAMILTON-MRI, USA). In additional to conventional sequences, fMRI is performed for diffusion-prepared pseudo-continuous arterial spin labeling (DP-pCASL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI). These MRI sequences allow quantitative assessment of the patients' cerebral microcirculation, blood-brain barrier, and cerebral oxygenation status. Patients will be followed up for neurologic prognosis according to the Modified Rankin Scale (mRS) at 6 months after disease onset.

NCT ID: NCT05961748 Recruiting - Heart Failure Clinical Trials

Registry of Multicenter Brain-Heart Comorbidity in China

BHC-C
Start date: January 1, 2012
Phase:
Study type: Observational

This study is a multi-center, prospective, registry study. This research was supported by the National Key Research and Development Program. To establish a domestic multi-center, large-scale "brain-heart comorbidity" dynamic database platform including clinical, sample database, image and other multi-dimensional information requirements, through the construction of a multi-center intelligent scientific research integration platform based on artificial intelligence. Any of newly diagnosed cardiovascular related diseases were identified via ICD-10-CM codes: I21, I22, I24 (Ischaemic heart diseases) [i.e., ACS], I46 (cardiac arrest), I48 (Atrial fibrillation/flutter), I50 (Heart failure), I71 (Aortic disease), I60 (subarachnoid hemorrhage), I61 (intracerebral hemorrhage), I63 (Cerebral infarction), I65 (Occlusion and stenosis of precerebral arteries), I66 (Occlusion and stenosis of cerebral arteries), I67.1 (cerebral aneurysm), I67.5 (moyamoya diseases), Q28.2 (Arteriovenous malformation of cerebral vessels). The data is stored on the brain-heart comorbidity warehouse via a physical server at the institution's data centre or a virtual hosted appliance. The brain-heart comorbidity platform comprises of a series of these appliances connected into a multicenter network. This network can broadcast queries to each appliance. Results are subsequently collected and aggregated. Once the data is sent to the network, it is mapped to a standard and controlled set of clinical terminologies and undergoes a data quality assessment including 'data cleaning' that rejects records which do not meet the brain-heart comorbidity quality standards. The brain-heart comorbidity warehouse performs internal and extensive data quality assessment with every refresh based on conformance, completeness, and plausibility (http://10.100.101.65:30080/login).

NCT ID: NCT05926973 Recruiting - Cardiac Arrest Clinical Trials

VectOr ChAnge defibriLlatIon in Refractory Shockable rhyThms

VOCALIST
Start date: May 1, 2023
Phase:
Study type: Observational

Management of cardiac arrest according to published guidelines has remained largely unchanged for a decade. Thames Valley Air Ambulance provide Critical Care Paramedic and Physician teams who respond to cardiac arrests and offer treatments beyond the scope of ambulance service clinicians. Following a review of practice and appraisal of evidence the investigators developed an additional algorithm for cases of adult medical cardiac arrest with refractory shockable rhythms. This adds to but does not replace the Advanced Life Support algorithm and includes: - Delivering shocks with the LUCAS mechanical CPR device running - After 5 shocks have been delivered placing new pads in the Anterior Posterior (AP) position - Delivering shocks using the TVAA Tempus Pro defibrillator rather than the Ambulance Service defibrillator. This bundle was based on recommendations from ILCOR and the Resus Council (UK) Advanced Life Support manual and was launched in October 2021.