Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02082821
Other study ID # Pure-Heart-1
Secondary ID 14GRNT1873002
Status Completed
Phase
First received
Last updated
Start date January 2014
Est. completion date December 2020

Study information

Verified date March 2021
Source Boston Children's Hospital
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Heart transplantation (HT) is a lifesaving procedure for patients with end-stage heart failure and provides a better survival and quality of life if compared to medical treatment. HT is subject to alloimmune response, which, if left uncontrolled, is capable of jeopardizing long-term cardiac function. Advances in immunosuppression have enhanced the survival of HT patients. Nearly 2500 HT per year have been performed in the US during the last 10 years and despite significant improvements, long-term survival rates remain poor. More than 20% of patients do not survive more than 3 years, and those who survive are afflicted by long-term complications of alloimmunity and chronic immunosuppression. Life expectancy of patients who lose cardiac allografts is dramatically poor due to the absence of any therapeutic tool apart from re-transplantation, which is plagued by poor outcomes. The identification of novel therapeutic targets is thus mandatory. ATP/P2X7R signaling in T cells is highly relevant for cardiac allograft survival. ATP is a small molecule present at high concentrations inside cells; it is released as extracellular ATP (eATP) following cell damage or death where it acts as a danger signal. ATP is sensed by the P2X receptors (seven receptors named P2X1-7), mainly expressed by T lymphocytes. We have recently demonstrated that the ATP/P2X7R axis has a key role in cardiac allograft survival in humans and mice. Cardiac allograft vasculopathy (CAV) is a major limiting factor for HT survival; indeed CAV occurs in 50% of HT recipients by 5 years after transplantation and invariably results in allograft failure. CAV is clearly of immunological origin, as syngeneic murine grafts do not develop it. Once CAV occurs, the most definitive treatment is re-transplantation, but survival remains poor. We hypothesize that a single nucleotide polymorphysm (SNP) loss-of-function P2X7R mutation (p.Glu496Ala / c.1513A>C, rs3751143) generates a compensatory upregulation of the other purinergic receptors (P2XsR), thus creating a state of hypersensitivity to eATP. This eATP hypersensitivity results in an abnormal generation of Th1/Th17 cells, that leads to CAV and early cardiac allograft loss. Our study will answer a fundamental question: What is the effect of the P2X7R loss-of-function mutation on the immune system? Our goal is to generate the first targeted-therapy for a selected group of cardiac transplant recipients.


Description:

Heart transplantation is a lifesaving procedure however, more then 20% of patients do not survive beyond 3 years, being the cardiac allograft afflicted by cardiac allograft vasculopathy (CAV), which results in allograft loss. The purine adenosine 5'-triphosphate (ATP), released during cell damage/inflammation, is sensed by the ionotropic purinergic P2X7 receptor (P2X7R), which is expressed primarily, though not exclusively, on lymphocytes, thus regulating T cell activation. Loss-of-function single nucleotide mutations (SNPs) have been detected for P2X7R gene; particularly the Glu496 to Ala 1513A>C (rs3751143) P2X7R loss-of-function mutation is relatively common (1-3% of individuals are mutated omozygous and 25% are heterozygous). Our central hypothesis is that a loss-of-function P2X7R mutation identifies a group of cardiac transplanted patients at high risk for CAV and cardiac allograft loss because of a compensatory overexpression of P2X1R/P2X4R, which induces a disregulation of T-bet/ROR-g, ultimately leading to the abnormal generation of Th1/Th17 cells. Our primary goal is to define the effect of the P2X7R loss-of-function mutation on clinical end points in the CTOT-05 cohort of cardiac transplant recipients (200 patients) and to explore the effects of the mutation on the immune system. Our preliminary data demonstrated that P2X7R increases during cardiac transplant rejection in vivo in mice and in humans and it is activated by ATP released by cardiac cells, thus triggering activation of Th1/Th17 cells. However, while short-term disruption of the P2X7R pathway prolongs cardiac allograft survival, the genetic deletion of P2X7R accelerates CAV and shortens cardiac allograft survival. This was evident in P2X7R KO-B6 mice and in a group of cardiac transplant recipients bearing the P2X7R loss-of-function mutation. Based on our published results and our novel observations, we have developed the following working hypothesis: P2X7R loss-of-function mutation generates a compensatory overexpression of the other ionotropic purinergic receptors (P2X1/P2X4) with chronic delivery of ATP immunity, hyperactivation T-bet/ROR-g, abnormal generation of Th1/Th17 cells and ultimately leading to accelerated CAV and to cardiac allograft loss. To test this hypothesis, we will follow two main paths: i) we will evaluate in the CTOT-05 cohort of cardiac transplant recipients the effect of the Glu496 to Ala 1513A>C (rs3751143) P2X7R loss-of-function mutation on clinical end points (development of coronary artery vasculopathy, death, re-transplantation or re-listed for transplantation, any rejection) in the first year post transplant; ii) we will explore in vivo and ex vivo in the CTOT-05 cohort of cardiac transplant recipients the effects of P2X7R loss-of-function mutation on the immune system.


Recruitment information / eligibility

Status Completed
Enrollment 200
Est. completion date December 2020
Est. primary completion date August 2019
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 65 Years
Eligibility Inclusion Criteria: - Male or female cardiac recipients - 18-65 years of age - undergoing primary heart transplantation - the graft must be functional at the time of randomization. - patient willing and capable of giving written informed consent for study participation and anticipated to be able to participate in the study for 12 months Exclusion Criteria: - Recipient of multi-organ transplants or previously transplanted organs - Patients with donor greater than 65 years - Donor heart cold ischemic time > 6 hours. - Patients who are recipients of ABO incompatible transplants - Patients with platelet count < 50,000/mm3 at the evaluation before transplantation - Patient who have received an unlicensed drug or therapy within one month prior to study entry or if such therapy is to be instituted post-transplantation - Patient with a current severe systemic infection - Patient unable to participate in the study for the full 12-month period - Presence of severe hypercholesterolemia (= 350 mg/dL; = 9 mmol/L) or hypertriglyceridemia (= 750 mg/dL; = 8.5 mmol/L) - Patients with any past (within the past 5 years) or present malignancy (other than excised basal cell carcinoma) - Females capable of becoming pregnant must have a negative pregnancy test prior to randomization and are required to practice a medically approved method of birth control for the duration of the study and a period of 8 weeks following discontinuation of study medication, even where there has been a history of infertility. - Patients with HIV, hepatitis B or C.

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
United States Boston Children's Hospital Boston Massachusetts

Sponsors (1)

Lead Sponsor Collaborator
Boston Children's Hospital

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Cardiac Allograft Vasculopathy nominal change from baseline to 1 year in percent atheroma volume measured by intravascular ultrasound 1 year
Secondary Heart Rejection or Patient Death Death
re-transplant
biopsy proven acute rejection
antibody mediated rejection
cellular rejection;
treated rejection
hemodynamic compromise-associated rejection
chronic allograft vasculaopathy at 12-months
total atheroma volume; change in average maximal intimal thickness
rapid progressive chronic allograft vasculaopathy (change in maximal intimal thickness) =0.5 mm in the first year (intravascular ultrasound)
histological changes of antibody mediated rejection (Immunohistochemistry).
6 months; 12 months
See also
  Status Clinical Trial Phase
Completed NCT02880137 - Real Time Myocardial Perfusion Echocardiography for Coronary Allograft Vasculopathy Phase 4
Terminated NCT01848301 - Endothelial Injury and Development of Coronary Intimal Thickening After Heart Transplantation Phase 1
Terminated NCT01278745 - Prevention of Cardiac Allograft Vasculopathy Using Rituximab (Rituxan) Therapy in Cardiac Transplantation Phase 2
Withdrawn NCT01812434 - Phosphodiesterase-5 (PDE-5) Inhibition in Heart Transplant Recipients N/A
Withdrawn NCT01305382 - Noninvasive Evaluation of Cardiac Allograft Vasculopathy N/A
Recruiting NCT05826444 - Microvascular Cardiac Allograft Vasculopathy Trial
Suspended NCT05756088 - Determining the Association of Microvascular Disease as Assessed by PET and Graft Injury by Donor Derived Cell Free DNA
Completed NCT02013037 - The De-novo Use of Eculizumab in Presensitized Patients Receiving Cardiac Transplantation Phase 3
Withdrawn NCT01305395 - Strategies To Prevent Cardiac Allograft Vasculopathy Related Events in Heart Transplant Recipients N/A
Withdrawn NCT01157949 - A Study to Compare the Effectiveness of a Drug That Suppresses the Immune System Called Thymoglobulin® in Preventing the Development of a Disease That Affects the Majority of Heart Transplant Recipients Called Cardiac Allograft Vasculopathy (CAV) Phase 3
Enrolling by invitation NCT06147271 - Impact of SGLT2 Inhibitors in Heart Transplant Recipients Phase 2
Recruiting NCT04193306 - Efficacy and Safety Of Alirocumab to Prevent Early Cardiac Allograft Vasculopathy in Recent Heart Transplant Recipients Phase 4
Recruiting NCT02798731 - Physiologic Assessment of Microvascular Function in Heart Transplant Patients
Withdrawn NCT02777255 - Severe CAV MRI in Heart Transplant Recipient N/A
Completed NCT05373108 - Endothelin-1 and Cardiac Allograft Vasculopathy (CAV) Phase 4
Withdrawn NCT01424917 - Noninvasive Predictors of Transplant Vasculopathy N/A
Recruiting NCT04770012 - AERIAL Trial: Antiplatelet Therapy in Heart Transplantation Phase 3
Active, not recruiting NCT01078363 - Angiotensin Converting Enzyme (ACE) Inhibition and Cardiac Allograft Vasculopathy N/A
Completed NCT03734211 - Cholesterol Lowering With EVOLocumab to Prevent Cardiac Allograft Vasculopathy in De-novo Heart Transplant Recipients Phase 3
Recruiting NCT06089486 - MARINER Trial: Multiparametric Cardiac PET for CAV Surveillance After Heart Transplantation N/A