Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05621837
Other study ID # INT 48/21
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date March 10, 2022
Est. completion date May 17, 2024

Study information

Verified date September 2022
Source Fondazione IRCCS Istituto Nazionale dei Tumori, Milano
Contact Licia Rivoltini
Phone +3902/23903245
Email licia.rivoltini@istitutotumori.mi.it
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The Serpentine (Stratify cancER PatiENTs by ImmuNosupprEssion) project, represents the most consistent effort so far attempted to translate MDSC into clinical practise by producing an off-the-shelf compliant assay for quantifying these cells in peripheral blood.


Description:

The study will demonstrate that this assay helps personalizing cancer therapies by tailoring them to immune patient features. The project will also take advantage of innovative and high-throughput techniques to define additional MDSC related biomarkers and, most importantly, to identify novel drugs for Myeloid-derived Suppressor Cells (MDSC) blocking in predisposed patients. Finally,it will perform the first survey assessing the link between MDSC and "perceived social isolation", an emerging western social problem recently shown to cause myeloid cell dysfunction and immunosuppression though neuroendocrine circuits. Globally, the Serpentine proposal has the ambitious goal to translate into the clinical oncological practise the use of MDSC quantification as a tool for the systematic assessment of systemic immunosuppression, providing at the same time operational insights into the strategies to overcome this pillar mechanism of cancer progression.


Recruitment information / eligibility

Status Recruiting
Enrollment 1000
Est. completion date May 17, 2024
Est. primary completion date May 17, 2024
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 90 Years
Eligibility Inclusion Criteria - Histologically documented diagnosis of metastatic/locally advanced melanoma, hormone-refractory breast cancer, RCC and UC, SCCHN, SCC or NSCLC, stage III resectable NSCLC will also be included - Will and ability to comply with the protocol - Willingness and ability to provide an adequate archival Formalin-Fixed Paraffin-Embedded (FFPE) tumor sample available for exploratory biomarker analysis - Age from 18 to 90 years at the time of recruitment - ECOG Performance Status <= 2 - Understanding and signature of the informed consent - Consenting to participate to the socio-economical-psychological survey Exclusion Criteria - Known history of HIV infection - Serious neurological or psychiatric disorders - Pregnancy or lactation - Inability or unwillingness of participant to give written informed consent - Inability or unwillingness to be regularly followed up at the same center

Study Design


Intervention

Other:
MDSC quantification
Blood sample will be collected at baseline and during therapy, and, optionally, in case of disease progression (PD).

Locations

Country Name City State
Italy Fondazione IRCCS Istituto Nazionale dei Tumori Milan

Sponsors (1)

Lead Sponsor Collaborator
Fondazione IRCCS Istituto Nazionale dei Tumori, Milano

Country where clinical trial is conducted

Italy, 

References & Publications (23)

Apetoh L, Tesniere A, Ghiringhelli F, Kroemer G, Zitvogel L. Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res. 2008 Jun 1;68(11):4026-30. doi: 10.1158/0008-5472.CAN-08-0427. — View Citation

Blattner C, Fleming V, Weber R, Himmelhan B, Altevogt P, Gebhardt C, Schulze TJ, Razon H, Hawila E, Wildbaum G, Utikal J, Karin N, Umansky V. CCR5+ Myeloid-Derived Suppressor Cells Are Enriched and Activated in Melanoma Lesions. Cancer Res. 2018 Jan 1;78(1):157-167. doi: 10.1158/0008-5472.CAN-17-0348. Epub 2017 Oct 31. — View Citation

Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016 Jul 6;7:12150. doi: 10.1038/ncomms12150. — View Citation

Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, Ryan RJ, Iwamoto Y, Marinelli B, Gorbatov R, Forghani R, Novobrantseva TI, Koteliansky V, Figueiredo JL, Chen JW, Anderson DG, Nahrendorf M, Swirski FK, Weissleder R, Pittet MJ. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2491-6. doi: 10.1073/pnas.1113744109. Epub 2012 Jan 30. — View Citation

Crunkhorn S. Cancer: New path to improving immunotherapy. Nat Rev Drug Discov. 2018 Mar;17(3):164. doi: 10.1038/nrd.2018.22. Epub 2018 Feb 16. — View Citation

De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, Douglas M, Tibbitts T, Sharma S, Proctor J, Kosmider N, White K, Stern H, Soglia J, Adams J, Palombella VJ, McGovern K, Kutok JL, Wolchok JD, Merghoub T. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature. 2016 Nov 17;539(7629):443-447. doi: 10.1038/nature20554. Epub 2016 Nov 9. — View Citation

Dumeaux V, Fjukstad B, Fjosne HE, Frantzen JO, Holmen MM, Rodegerdts E, Schlichting E, Borresen-Dale AL, Bongo LA, Lund E, Hallett M. Interactions between the tumor and the blood systemic response of breast cancer patients. PLoS Comput Biol. 2017 Sep 28;13(9):e1005680. doi: 10.1371/journal.pcbi.1005680. eCollection 2017 Sep. — View Citation

Engblom C, Pfirschke C, Pittet MJ. The role of myeloid cells in cancer therapies. Nat Rev Cancer. 2016 Jul;16(7):447-62. doi: 10.1038/nrc.2016.54. — View Citation

Filipazzi P, Huber V, Rivoltini L. Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother. 2012 Feb;61(2):255-263. doi: 10.1007/s00262-011-1161-9. Epub 2011 Nov 27. Review. — View Citation

Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007 Jun 20;25(18):2546-53. doi: 10.1200/JCO.2006.08.5829. — View Citation

Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression. Front Immunol. 2018 Mar 2;9:398. doi: 10.3389/fimmu.2018.00398. eCollection 2018. — View Citation

Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res. 2017 Jan;5(1):3-8. doi: 10.1158/2326-6066.CIR-16-0297. — View Citation

Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell. 2015 Dec 14;28(6):690-714. doi: 10.1016/j.ccell.2015.10.012. Review. — View Citation

Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, Umansky V. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019 Jan;120(1):16-25. doi: 10.1038/s41416-018-0333-1. Epub 2018 Nov 9. — View Citation

Huber V, Vallacchi V, Fleming V, Hu X, Cova A, Dugo M, Shahaj E, Sulsenti R, Vergani E, Filipazzi P, De Laurentiis A, Lalli L, Di Guardo L, Patuzzo R, Vergani B, Casiraghi E, Cossa M, Gualeni A, Bollati V, Arienti F, De Braud F, Mariani L, Villa A, Altevogt P, Umansky V, Rodolfo M, Rivoltini L. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J Clin Invest. 2018 Dec 3;128(12):5505-5516. doi: 10.1172/JCI98060. Epub 2018 Nov 5. — View Citation

Ostrand-Rosenberg S. Myeloid derived-suppressor cells: their role in cancer and obesity. Curr Opin Immunol. 2018 Apr;51:68-75. doi: 10.1016/j.coi.2018.03.007. Epub 2018 Mar 13. — View Citation

Peguillet I, Milder M, Louis D, Vincent-Salomon A, Dorval T, Piperno-Neumann S, Scholl SM, Lantz O. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 2014 Apr 15;74(8):2204-16. doi: 10.1158/0008-5472.CAN-13-2269. Epub 2014 Feb 17. — View Citation

Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018 Mar 23;359(6382):1350-1355. doi: 10.1126/science.aar4060. Epub 2018 Mar 22. Review. — View Citation

Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, Gherardini PF, Prestwood TR, Chabon J, Bendall SC, Fong L, Nolan GP, Engleman EG. Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell. 2017 Jan 26;168(3):487-502.e15. doi: 10.1016/j.cell.2016.12.022. Epub 2017 Jan 19. — View Citation

Steinberg SM, Shabaneh TB, Zhang P, Martyanov V, Li Z, Malik BT, Wood TA, Boni A, Molodtsov A, Angeles CV, Curiel TJ, Whitfield ML, Turk MJ. Myeloid Cells That Impair Immunotherapy Are Restored in Melanomas with Acquired Resistance to BRAF Inhibitors. Cancer Res. 2017 Apr 1;77(7):1599-1610. doi: 10.1158/0008-5472.CAN-16-1755. Epub 2017 Feb 15. — View Citation

Welters MJ, van der Sluis TC, van Meir H, Loof NM, van Ham VJ, van Duikeren S, Santegoets SJ, Arens R, de Kam ML, Cohen AF, van Poelgeest MI, Kenter GG, Kroep JR, Burggraaf J, Melief CJ, van der Burg SH. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci Transl Med. 2016 Apr 13;8(334):334ra52. doi: 10.1126/scitranslmed.aad8307. — View Citation

Wesolowski R, Markowitz J, Carson WE 3rd. Myeloid derived suppressor cells - a new therapeutic target in the treatment of cancer. J Immunother Cancer. 2013 Jul 15;1:10. doi: 10.1186/2051-1426-1-10. eCollection 2013. — View Citation

Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF, Kefford RF, Hersey P, Scolyer RA. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res. 2012 Mar 1;18(5):1386-94. doi: 10.1158/1078-0432.CCR-11-2479. Epub 2011 Dec 12. — View Citation

* Note: There are 23 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Immunological endpoint Frequency, in terms of percentage and absolute count of the defined cell subsets in whole blood and stored PBMC baseline, that is prior to start the therapy (Visit_1)
Primary Immunological endpoint Frequency, in terms of percentage and absolute count of the defined cell subsets in whole blood and stored PBMC around one month/before the time-corresponding treatment cycle (Visit_2)
Primary Immunological endpoint Frequency, in terms of percentage and absolute count of the defined cell subsets in whole blood and stored PBMC around three months/before the time-corresponding treatment cycle (Visit_3)
Primary Immunological endpoint Frequency, in terms of percentage and absolute count of the defined cell subsets in whole blood and stored PBMC Through study completion, an average of 2 year
Primary Clinical endpoint_PFS Progression-Free Survival (PFS) Through study completion, an average of 2 year
Primary Clinical endpoint_OS Overall Survival (OS) Through study completion, an average of 2 year
Primary Clinical endpoint_ORR Overall Response Rate (ORR) Through study completion, an average of 2 year
Secondary Myeloid Index Score (MIS) Myeloid Index Score (MIS)=0 vs MIS>0 or higher values Through study completion, an average of 2 year
Secondary Index score values Index score values on plasma cytokine concentration or MDSC-miRs Through study completion, an average of 2 year
Secondary Transcriptional signatures_PBMC Transcriptional signatures identified on PBMC and sorted myeloid cells form whole blood baseline, that is prior to start the therapy (Visit_1) or at the first disease evaluation (around after three months)
Secondary Transcriptional signatures_myeloid cells Transcriptional signatures identified on sorted myeloid cells form whole blood baseline, that is prior to start the therapy (Visit_1) or at the first disease evaluation (around after three months)
Secondary Phospho-kinome signature result Phospho-kinome signature as assessed by Cytof analysis in stored PBMC Through study completion, an average of 2 year
Secondary Metabolomic profiles The concentration of individual metabolites or cluster of metabolites implicated in amino acid and lipid metabolism Through study completion, an average of 2 year
Secondary Socio-Economical-Psychological (SEP) score Socioeconomic and psychological (perceived social isolation) score, calculated through a dedicated questionnaire Through study completion, an average of 2 year
See also
  Status Clinical Trial Phase
Recruiting NCT04681911 - Inetetamab Combined With Pyrotinib and Chemotherapy in the Treatment of HER2 Positive Metastatic Breast Cancer Phase 2
Completed NCT04890327 - Web-based Family History Tool N/A
Terminated NCT04066790 - Pyrotinib or Trastuzumab Plus Nab-paclitaxel as Neoadjuvant Therapy in HER2-positive Breast Cancer Phase 2
Completed NCT03591848 - Pilot Study of a Web-based Decision Aid for Young Women With Breast Cancer, During the Proposal for Preservation of Fertility N/A
Recruiting NCT03954197 - Evaluation of Priming Before in Vitro Maturation for Fertility Preservation in Breast Cancer Patients N/A
Terminated NCT02202746 - A Study to Assess the Safety and Efficacy of the VEGFR-FGFR-PDGFR Inhibitor, Lucitanib, Given to Patients With Metastatic Breast Cancer Phase 2
Active, not recruiting NCT01472094 - The Hurria Older PatiEnts (HOPE) With Breast Cancer Study
Withdrawn NCT06057636 - Hypnosis for Pain in Black Women With Advanced Breast Cancer: A Feasibility Study N/A
Completed NCT06049446 - Combining CEM and Magnetic Seed Localization of Non-Palpable Breast Tumors
Recruiting NCT05560334 - A Single-Arm, Open, Exploratory Clinical Study of Pemigatinib in the Treatment of HER2-negative Advanced Breast Cancer Patients With FGFR Alterations Phase 2
Active, not recruiting NCT05501769 - ARV-471 in Combination With Everolimus for the Treatment of Advanced or Metastatic ER+, HER2- Breast Cancer Phase 1
Recruiting NCT04631835 - Phase I Study of the HS-10352 in Patients With Advanced Breast Cancer Phase 1
Completed NCT04307407 - Exercise in Breast Cancer Survivors N/A
Recruiting NCT03544762 - Correlation of 16α-[18F]Fluoro-17β-estradiol PET Imaging With ESR1 Mutation Phase 3
Terminated NCT02482389 - Study of Preoperative Boost Radiotherapy N/A
Enrolling by invitation NCT00068003 - Harvesting Cells for Experimental Cancer Treatments
Completed NCT00226967 - Stress, Diurnal Cortisol, and Breast Cancer Survival
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT06019325 - Rhomboid Intercostal Plane Block on Chronic Pain Incidence and Acute Pain Scores After Mastectomy N/A